PHYSICS-BASED DESIGN OF PROTEIN-LIGAND BINDING

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOCHEMISTRY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

F. Edward Boas

May 2008

Copyright by F. Edward Boas 2008 All rights reserved I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Pehr Harbury

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Herschlag

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tom Wandless

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Axel Brünger

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

Different potential energy functions have been used in protein dynamics simulations, protein design calculations, and protein structure prediction. Clearly, the same physics applies in all three cases, so the variation in potential energy functions reflects differences in how the calculations are performed. With improvements in computer power and algorithms, the same potential energy function should be applicable to all three problems.

Here we show that a standard molecular-mechanics potential energy function without any modifications can be used to engineer protein-ligand binding. A molecular-mechanics potential is used to reconstruct the coordinates of various binding sites with an average root mean square error of 0.61 Å, and to reproduce known ligand-induced side-chain conformational shifts. Within a series of 34 mutants, the calculation can always distinguish weak ($K_d > 1$ mM) and tight ($K_d < 10$ µM) binding sequences. Starting from partial coordinates of the ribose binding protein lacking the ligand and the ten primary contact residues, the molecularmechanics potential is used to redesign a ribose binding site. Out of a search space of 2×10^{12} sequences, the calculation selects a point mutant of the native protein as the top solution (experimental $K_d = 17 \mu$ M), and the native protein as the second best solution (experimental $K_d = 210$ nM). The quality of the predictions depends on the accuracy of the generalized Born electrostatics model, treatment of protonation equilibria, high resolution rotamer sampling, a final local energy minimization step, and explicit modeling of the bound, unbound, and unfolded states.

After this initial proof of principle experiment, we next used a standard molecular mechanics potential energy function to redesign ribose binding protein to bind a series of ligands: L-arabinose, D-xylose, indole-3-acetic acid, and estradiol. The resulting proteins have 5 - 10 mutations from the native, are stable, the predicted structures have good hydrogen bonds and shape complementarity, and they use motifs similar to natural binding proteins. All of the designed proteins bind to their target ligands with measurable but weak affinity. The affinity was improved by random mutagenesis and screening.

The application of unmodified molecular-mechanics potentials to protein design links two fields in a mutually beneficial way. Design provides a new avenue to test molecular-mechanics energy functions, and future improvements in these energy functions will presumably lead to more accurate design results.

This is the first time a single model has been used to predict structures, binding constants, and to design new small-molecule binding sites. Using a standard model should improve the generality of protein design, which could enable the creation of custom proteins for a wide variety of applications, including sensors, enzymes, and protein therapeutics.

Acknowledgements

Pehr does the type of science that makes people say "wow, I had no idea you could do that" or "why didn't *I* think of that." He has the remarkable ability to invent crazy new ideas, and turn them into reality. He focuses on the key roadblocks in a field, and comes up with creative new approaches to solving them. That's why I joined Pehr's lab, and I have learned a lot from doing science with him.

The lab is a very social place, where everyone helps each other out. Lance has been my baymate for 5 years, and we've gone through many life changing events together. Since I met Lance, he got married and became a father. We've discussed the mysteries of the universe, and all of the popular culture that I missed while growing up. Jarrett and I are classmates in the MSTP program, and we joined the lab at the same time. He's a remarkably multi-talented person, and I've appreciated his good insights into both scientific and personal topics. Becky always knows the inside story, and she knows how to negotiate the best price for anything. She is a loyal friend and also has been a wonderful collaborator, generating crystals of our designed small molecule binding proteins. Rebecca has a good stories to tell, and is always eager to hear my stories as well. She is smart, curious, and quirky in the best possible way. Becky and Rebecca have both made the lab a much nicer place to work, making sure that everyone's birthday gets celebrated, and generally keeping the lab together socially. Jim and Erica also worked on computational protein design, and they were a good source of ideas. Jim developed the multi-state design framework that the lab

uses. Erica developed a continuous mean field algorithm for improving structural sampling.

Several collaborators have been indispensable for characterizing the designed binding proteins. Rebecca Fenn has spearheaded this effort, from collecting small angle X-ray scattering (SAXS) data to generating crystals. Pavel Strop in Axel Brunger's lab solved a crystal structure of one of the unbound designed proteins. Jan Lipfert from Seb Doniach's lab collected SAXS data on the designed proteins. John King in Suzanne Pfeffer's lab helped with protein purification.

I'd also like to thank my committee — Dan Herschlag, Axel Brunger, and Tom Wandless — for keeping me on track, and getting me focused on realistic goals. Dan Herschlag was particularly instrumental in this.

I've gotten great scientific advice from a few other people. Loren Looger and I talked broadly about protein design and he suggested ways to troubleshoot the design calculations. Michael Levitt and Buzz Baldwin provided encouragement and advice when I needed it.

My Mom and Dad have been a big source of wisdom over the years. My Mom encouraged my interest in science from an early age, and I remember all the times she helped me learn new things and meet interesting people. My mom taught me the value of family, hard work, and perseverence. She has a lot of willpower, doesn't take no for an answer, and I hope I have picked up some of that. My Dad taught me how to tinker and build things, and I enjoyed the times we used to spend together building things. Finally, Katie has been my best friend, source of encouragement, and she has taught me how to relax and enjoy the ride.

vii

Thank you to everyone who helped make this possible! I couldn't have done it without you all.

Table of contents

Abstract	iv
Acknowledgements	vi
Table of contents	ix
List of tables	xii
List of figures	xiii
Chapter 1: Introduction	1
Relationship to the protein folding problem	1
Design goal	2
Innovative aspects of the research	3
Models for understanding molecular recognition	5
Finding a protein's low energy conformations	7
Probabilistic description of protein conformation	10
Evolving binding sites	11
Chapter 2: Potential energy functions for protein design	13
Summary	13
Introduction	13
Potential energy functions	
Conclusions and future directions	
Acknowledgements	
Chapter 3: Physics-based design of protein-ligand Binding	
Summary	

Introduction	31
Results	34
Discussion	53
Materials and methods	55
Acknowledgments	58
Chapter 4: The protein design algorithm	59
Potential energy function	59
Overview	59
Water	65
Generalized-Born energy	65
Pairwise approximation of solvent accessible surface area (SASA)	69
Deprotonation energy	71
Discrete sampling	74
Protein scaffold coordinates	74
Selection of design positions	74
Rotamer library	75
Ligand poses	77
Structural optimization	79
Unfolded state	81
Sequence optimization (genetic algorithm)	83
Appendix: Integrals	86
Chapter 5: Physics-based design of new binding proteins	87
Summary	87

Introduction	
Results	
Discussion	101
Materials and methods	
Chapter 6: Conclusion	
Designing for specificity	
Energetic vs structural predictions	110
Comparison to more established branches of engineering	110
Application: Sensors	111
Application: Custom enzymes	115
Application: Therapeutic proteins	116
References	

List of tables

Table 1.	Predicted protonation states
Table 2.	Predicted and calculated arabinose dissociation energy of ABP mutants47
Table 3.	High resolution rotamer library, gradient-based local minimization, and an
accu	rate solvation model are required to successfully redesign the ribose binding
site	in RBP
Table 4.	Deprotonation energies for the titratable amino acids in the 6028-member
rota	mer library74
Table 5.	The highest resolution rotamer library with 6028 rotamers
Table 6.	Intrinsic unfolded-state chemical potentials for the amino acids in the
602	8-member rotamer library
Table 7.	Genetic algorithm parameters
Table 8.	Sequences of RBP redesigned to bind other ligands
Table 9.	Ligand parameters
Table 10	. Designed estradiol binding site in RBP is more polar when VDW stretch =
0.3	Å95
Table 11	. Properties of designed and natural binding proteins
Table 12	. RBP-IAA library
Table 13	. Sensor applications

List of figures

Figure 1.	Examples of computational protein design4
Figure 2.	Qualitative model of molecular recognition
Figure 3.	Low energy protein conformations
Figure 4.	Probabilistic model of protein structure11
Figure 5.	Proteins can be modeled at different levels of detail
Figure 6.	Molecular mechanics potential energy function with continuum solvent18
Figure 7.	Knowledge-based potential energy function
Figure 8.	Simplified schematic of the protein design algorithm
Figure 9.	Higher rotamer resolution improves structural predictions for the RBP
bindi	ng site (PDB code: 2DRI)
Figure 10	0. Prediction of binding site coordinates
Figure 11	. Prediction of binding site coordinates for bevacizumab-VEGF (1BJ1),
unbo	und VEGF (2VPF), and unbound RBP (1URP)41
Figure 12	Prediction of side chain conformational shifts in RBP upon binding ribose,
or VI	EGF upon binding bevacizumab42
Figure 13	. In ABP-arabinose, 14 Glu and 89 Asp must be protonated to maintain the
cryst	al structure coordinates under local minimization. If they are deprotonated,
then	the coordinates for 89 Asp shift out of position
Figure 14	Predicting dissociation energies
Figure 15	5. Redesigning the ribose binding site in RBP
Figure 16	6. Potential energy function

Figure 17. Examples of protein behaviors treated by our model. Factors typically
ignored in design calculations are highlighted63
Figure 18. Slice through ribose binding protein, showing generalized Born radii. The
radii correlate with atom burial67
Figure 19. Comparison of generalized Born radii for protein tyrosine phosphatase 1B
calculated using an integral formula (y-axis) with radii calculated using a
finite-difference approach (x-axis)67
Figure 20. Comparison of solvent polarization energies for a set of small molecules,
peptides, and proteins calculated using the generalized-Born approach (y-axis)
with values calculated using a finite-difference approach (x-axis)
Figure 21. Thermodynamic cycle used to evaluate the deprotonation energy for
aspartate (A)
Figure 22. Ligand sampling and filters
Figure 23. Discrete then continuous optimization of protein structure
Figure 24. Genetic algorithm
Figure 25. In vitro evolution vs computational protein design
Figure 26. Target ligands
Figure 27 . Experimental ^{119,120} and calculated β -pyranose energy – α -pyranose energy
(kcal/mol)
Figure 28. The Lennard-Jones potential is frequently softened in design calculations
to compensate for low sampling resolution
Figure 29. Structures of designed and natural binding proteins
Figure 30. Summary figure

Figure 31. Designing for specificity in arabinose binding protein.	108
Figure 32. Structural determinants of specificity.	109
Figure 33. Energetic vs structural predictions in an inaccurate energy model	110
Figure 34. Biosensor. Binding induces a conformational change that results in a	
change in fluorescence or enzymatic activity	112
Figure 35. Binding to the transition state of a reaction catalyzes that reaction	115