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Chapter 3: Physics-based design of 
protein-ligand Binding 

 

This chapter has been adapted from: 

Boas FE and Harbury PB. (2008) “Physics-based design of protein-ligand binding.”  

Journal of Molecular Biology.  In press. 

 

 

Summary 

While the molecular-mechanics field has standardized on a few potential energy 

functions, computational protein design efforts are based on potentials that are unique 

to individual labs.  Here we show that a standard molecular-mechanics potential 

energy function without any modifications can be used to engineer protein-ligand 

binding.  A molecular-mechanics potential is used to reconstruct the coordinates of 

various binding sites with an average root mean square error of 0.61 Å, and to 

reproduce known ligand-induced side-chain conformational shifts.  Within a series of 

34 mutants, the calculation can always distinguish weak (Kd > 1 mM) and tight (Kd < 

10 μM) binding sequences.  Starting from partial coordinates of the ribose binding 

protein lacking the ligand and the ten primary contact residues, the molecular-

mechanics potential is used to redesign a ribose binding site.  Out of a search space of 

2×1012 sequences, the calculation selects a point mutant of the native protein as the top 

solution (experimental Kd = 17 μM), and the native protein as the second best solution 

(experimental Kd = 210 nM).  The quality of the predictions depends on the accuracy 
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of the generalized Born electrostatics model, treatment of protonation equilibria, high 

resolution rotamer sampling, a final local energy minimization step, and explicit 

modeling of the bound, unbound, and unfolded states.  The application of unmodified 

molecular-mechanics potentials to protein design links two fields in a mutually 

beneficial way.  Design provides a new avenue to test molecular-mechanics energy 

functions, and future improvements in these energy functions will presumably lead to 

more accurate design results. 

 

 

Introduction 

 Computer-aided design of a ligand binding site is similar to solving a 3D 

jigsaw puzzle: it involves fitting together the right pieces (amino acid mutations) to 

create a properly shaped and functionalized pocket for a ligand.  The inputs to the 

design procedure are the crystal structure of a scaffold protein, a ligand structure, and 

a set of amino-acid positions that will be mutated to create the binding site.  The 

orientations of candidate jigsaw-puzzle pieces are determined by modeling the 

conformations that the ligand and surrounding amino acids can adopt, so as to identify 

the lowest energy arrangement.  The design procedure searches through thousands of 

candidate sequences for one that optimizes the computed binding free energy of the 

ligand with the protein. The whole process depends heavily on the potential energy 

function (PEF), a mathematical expression embodying the physical laws that govern 

the protein-ligand and solvent system. 
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 Over the past 30 years, potential energy functions have played a central role in 

the molecular-mechanics field.  This field has converged on a small set of standard 

PEF’s that have been extensively tested.67  Identifying and correcting the limitations of 

these energy models is an area of active research.54,55,68  The modern molecular-

mechanics potential energy functions (MM-PEF’s) treat proteins as a collection of 

atoms with partial charges and van der Waals parameters, connected by springs that 

maintain bond lengths and angles.  The parameters are derived from quantum 

calculations and from experimental data on a wide range of systems.23  MM-PEF’s 

have been used to calculate binding constants69-73, protein folding kinetics74, 

protonation equilibria75, and active site coordinates71,76,77. 

 Perhaps surprisingly, standard MM-PEF’s are not used for protein design.78  

The reason is that computing energies using MM-PEF’s requires significant computer 

time and is very sensitive to detailed atom positions, necessitating fine conformational 

sampling.  When thousands of different sequences must be evaluated, the computation 

time per sequence becomes critical.  In order to accelerate calculations, design 

algorithms typically use simplified PEFs with various ad hoc energy terms2,3,7-

12,60,64,65,76,79,80 (heuristic potential energy functions are also often used to predict 

binding constants81,82 and to predict active site coordinates83).  Water is treated in a 

simplified way, for example by inserting a distance dependent dielectric constant into 

Coulomb’s law, and by applying a surface-area based solvation energy.2,3  The van der 

Waals interaction is frequently smoothed so that it is less sensitive to spatial position, 

and thus can be optimized with coarse sampling.2,3,7  Rather than explicitly modeling 

reference states, such as the unfolded state, the reference states are typically treated 
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implicitly by modifying the PEF.2,3,7  Statistical terms derived by counting how 

frequently different residues and functional groups interact in crystal structures, are 

included as well.2,3,7  Relative weights for the various energy terms are adjusted 

empirically so as to match experimental data.7,12  Similar approximations were used in 

the early days of molecular-mechanics calculations, but were replaced as better 

models and increased computational power became available. 

 There are several motivations for trying to identify a single, standardized 

energy function that is practically useful for protein design.  First, design results from 

different labs could be compared, and those results would collectively address where 

the energy model had failed and how to improve it.  Second, the practice of 

computational protein design would be simplified if PEF development were not 

required.  Finally, a PEF that had been broadly validated might be expected to 

generalize better to new design problems than would a customized PEF. 

 One reasonable choice for a universal energy function would be an MM-PEF.  

MM-PEF’s are the most broadly tested PEF’s,67 and a direct correspondence exists 

between them and more rigorous quantum-mechanical treatments of matter.23  A large 

group of scientists work on MM-PEF’s, and the advances they make would be directly 

applicable to design.  Here, we test whether protein-ligand binding sites can be 

successfully designed based on a standard MM-PEF that does not include any 

heuristic corrections.  We first describe how we directly apply an MM-PEF to the 

protein design problem, and then detail various tests applied to the ribose binding 

protein. 
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Results 

 

Design scheme 

 Using the genetic algorithm,20 we search through thousands of sequences to 

find one sequence that maximizes the calculated protein-ligand dissociation energy 

without destabilizing the protein by more than 5 kcal/mol.  To evaluate dissociation 

and unfolding energies, the bound, unbound, and unfolded states are modeled, and 

their calculated energies are differenced.  For each state, we use a mean field rotamer-

repacking algorithm to find the atomic coordinates that minimize the energy.  As part 

of the rotamer repacking, titratable residues are allowed to protonate or deprotonate 

depending on the local energetics. Good structural sampling is achieved by using 

extremely large rotamer libraries (≥ 5449 rotamers per position), and several thousand 

ligand poses that sample the translational, rotational, and internal degrees of freedom 

of the ligand.  The optimal structure generated by rotamer repacking is then subjected 

to gradient-based energy minimization.  The energies of each state are evaluated with 

the unmodified CHARMM22  molecular-mechanics potential energy function14 and 

the generalized Born solvation formalism15 developed by Lee et al.16  The design 

procedure is outlined in Figure 8.  To evaluate the approach, we apply three tests: 

structural prediction, energetic prediction, and prediction of a binding site sequence. 
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Figure 8.  Simplified schematic of the protein design algorithm. 

(a) Setting up a design calculation.  The design calculation is based on a scaffold protein (gray) with a known crystal structure, and a set of 

design positions (red).  Possible ligand poses (green) and side chain conformations (blue) for each amino acid at each position are 

constructed.  The right panel shows multiple side chain rotamers modeled at one design position, and two alternative ligand poses.  Interaction 
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energies between the possible ligand poses and the possible side chain conformations are precomputed.  (b) Running a design calculation.  

The design procedure involves separate sequence optimization (to find sequences that bind ribose) and structural optimization (to determine 

the binding constant and stability of each sequence).  In the RBP-ribose redesign, we search a space of 2×1012 sequences and an average of 

5×1028 conformations per sequence. 
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Structural prediction 

 For structural predictions, we started with crystal structures and discarded the 

coordinates of the ligand and all contacting side chains.  These coordinates were then 

predicted in the context of the rest of the protein.  We first explored the effect of 

sampling resolution by predicting the structure of ribose binding protein (RBP) bound 

to ribose using four rotamer libraries of increasing size (Figure 9).  With fewer than 

5449 rotamers per position, the calculated energy of the predicted structure is less 

favorable than the calculated energy of the crystal structure, indicating that the crystal 

structure conformation is missed due to inadequate sampling resolution.  At 5449 

rotamers per position, the predicted structure has the same energy as the energy-

minimized crystal structure, and the coordinates differ by a root mean square (RMS) 

error of 0.148 Å.  This level of accuracy exceeds the experimental error in the 

crystallographic coordinates.  This apparently surprising result likely occurs because 

the fixed portion of the crystallographic coordinates constrains the possible solutions 

at the modeled positions.  However, this constraint alone is not sufficient to specify 

the binding site sequence and geometry (see below). 
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Figure 9.  Higher rotamer resolution improves structural predictions for the RBP binding site 

(PDB code: 2DRI). 

Δ Energy is the difference in potential energy between the calculated structure and the crystal 

structure, after both have been subjected to local energy minimization.  RMS error is the root-

mean-square deviation between the calculated and crystallographic coordinates of the 

repacked atoms, comprising the ligand and ten active site side chains.  The phenylalanine 

rotamers from each rotamer library are shown to illustrate the sampling resolution.  The lowest 

resolution rotamer library shown is the Richardson penultimate rotamer library17 with 

protonation states added for His, Asp, and Glu.  The other rotamer libraries were derived by 

clustering side chain conformations in high resolution crystal structures from the Protein Data 

Bank (see p. 75). 

 

 Using high resolution rotamer libraries (either 5449 or 6028 rotamers per 

position), side chains in the binding sites of 5 different structures were predicted with 

an average RMS error of 0.61 Å (Figure 10 & Figure 11).  The number of predicted 

residues ranged from 9 to 23.  The error was generally larger for surface residues, and 

when more positions were predicted. 

 For the RBP-ribose calculations, we restricted the ligand poses to be within 1.8 

Å RMS of the native pose, resulting in the 4639 poses shown in Figure 10.  For the 
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ABP-arabinose calculations, the ligand poses were restricted to be within 1.0 Å RMS 

of the native pose, resulting in the 4111 poses shown in Figure 10.  Although we 

would have preferred to do the calculations without this filter, it was necessary to 

reduce the number of ligand poses to a manageable number (the precalculated 

interaction energy matrices had to be smaller than 2 GB to fit into memory). 

 We explicitly model the bound and unbound states, providing predictions of 

side-chain conformational shifts upon binding.  The predicted changes match the 

crystal structures in 70% of the residues with the largest conformational shifts (Figure 

12).  Single-state design algorithms ignore such conformational shifts, in contrast to a 

multi-state design framework.9  Note that we did not predict the backbone shift upon 

binding (4.1 Å RMS for RBP and 0.8 Å RMS for VEGF) because the bound and 

unbound backbone coordinates were used as inputs to the calculation. 

 The calculation predicts that one aspartic acid and one glutamic acid in the 

binding site of ABP are protonated (Table 1).  If these residues are not allowed to 

protonate, the structural prediction is degraded (Figure 13). 
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 Ligand poses Side chain rotamers 
crystal structure / 

predicted structure RMS error 

ABP-arabinose 

 

 

0.677 Å 

RBP-ribose 

 

 

0.148 Å 

 
Figure 10.  Prediction of binding site coordinates. 

Starting from crystal structures stripped of the ligand and the contacting residues, the active site was reconstructed by finding the lowest 

energy arrangement of the ligand and side chains.  For ABP-arabinose (PBD code: 6ABP), the coordinates of the arabinose and 15 contacting 

residues (10, 14, 16, 17, 64, 89, 90, 108, 145, 147, 151, 204, 205, 232, 259) were predicted using 6028 rotamers per position and 4111 ligand 

poses.  For RBP-ribose (PDB code: 2DRI), the coordinates of ribose and 10 contacting residues (13, 15, 16, 89, 90, 141, 164, 190, 215, 235) 

were predicted using 5449 rotamers per position, and 4639 ligand poses. 
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Figure 11.  Prediction of binding site coordinates for bevacizumab-VEGF (1BJ1), unbound VEGF (2VPF), and unbound RBP (1URP). 

For bevacizumab-VEGF, the following 23 residues were repacked, using 6028 rotamers per position: V17, V21, W48, W79, W81, W82, W83, 

W91, W93, H28, H30, H31, H32, H54, H55, H99, H101, H102, H103, H105, H106, H107, H108.  V and W are VEGF chains, H and L are 

antibody heavy and light chains.  For unbound VEGF and RBP, the same set of residues were predicted as the bound structure. 
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Figure 12.  Prediction of side chain conformational shifts in RBP upon binding ribose, or VEGF upon binding bevacizumab. 

The five largest experimentally observed conformational shifts are shown for each protein.  The residues were superimposed by aligning the 

backbone amide nitrogen, alpha carbon, and carbonyl carbon.  * denotes correct predictions, where the unbound/bound predictions are closest 

to the unbound/bound crystallographic coordinates, respectively. 
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ABP-arabinose (6ABP) 
 Protonation state 
Residue bound unbound 
14 GUP GUP 
89 APP APP 
90 ASP ASP 
259 HSD HSD 

 
RBP-ribose (2DRI, 1URP) 
 Protonation state 
Residue bound unbound 
89 ASP ASP 
215 ASP ASP  

bevacizumab-VEGF (1BJ1, 2VPF) 
 Protonation state 
Residue bound unbound 
W93 GLU GLU 
H101 HSD HSD 
H107 HSD HSD 

 
 
 
 
 

 
Table 1.  Predicted protonation states. 

 

 
89 Asp 

 
crystal structure (6ABP) 
minimized crystal structure with 14 Glu and 89 Asp 
minimized crystal structure with 14 Gup and 89 App 

 
Figure 13.  In ABP-arabinose, 14 Glu and 89 Asp must be protonated to maintain the crystal 

structure coordinates under local minimization.  If they are deprotonated, then the coordinates 

for 89 Asp shift out of position. 

 

Energetic prediction 

 To test if the energy function can properly rank the binding affinities of 

different binding site sequences, we first computed ligand binding energies for the 

native ABP and RBP sequences and for 1000 scrambled sequences.  As expected, 

none of the scrambled sequences have better predicted stability and dissociation 

energy than the native (Figure 14a). 

 Next, we calculated the relative binding energies of 34 mutants of ABP for 

which dissociation energies have been measured.  Two sequences were predicted to 

destabilize the protein by more than 10 kcal/mol relative to native ABP, and 
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presumably adopt alternative backbone conformations.  The binding energies of the 

remaining sequences are predicted with a correlation coefficient of r2=0.57 (Figure 

14b, Table 2).  The predictions were performed without any adjustable parameters.  As 

each calculation required about 1 minute of CPU time on a Pentium processor, the 

approach is fast enough for design applications.  The data set includes single, double, 

and triple point mutants of wild type ABP, and covers a wide range of mutation types 

(hydrophobic to hydrophobic, hydrophobic to polar/charged, polar/charged to 

hydrophobic, and polar/charged to polar/charged). 

 Within the data set, the calculation can always distinguish weak (Kd > 1 mM) 

and tight (Kd < 10 μM) binding sequences.  However, the absolute dissociation 

energies are not predicted correctly.  One important possible source of error is that 

there is no published crystal structure of unbound ABP.  We model the unbound 

protein backbone conformation based on the crystal structure of bound ABP.  In 

reality, the unbound protein likely exists in an open conformation with better solvated 

binding-site residues.84  Our incorrect unbound state might explain the 21.2 kcal/mol 

offset in calculated dissociation energies.  The slope of the regression line is greater 

than one, which is likely due to modes of structural relaxation (such as backbone 

motions) that were not modeled.  The resulting clashes will exaggerate any energy 

differences between sequences.  Another possibility is that we are not adequately 

modeling entropy losses upon binding.85 
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Figure 14.  Predicting dissociation energies. 

(a)  Calculated stability and dissociation energy distinguish the native sequence (×) from 1000 scrambled sequences (♦) for ABP and RBP.  

Sequences predicted to be more then 10 kcal/mol destabilized relative to the native are shown in gray.  (b)  Predicting relative dissociation 

energies of mutants.  The graph shows data on mutants of ABP binding to arabinose.  Experimental data are from reference 86 and from 

measurements reported in Table 2.  An experimental dissociation energy of zero means that there was no detectable binding.  Calculations 

were performed using 6ABP as the scaffold structure for both the bound and unbound states, with 6028 rotamers per position.  Coordinates of 

the fifteen primary ligand contacts and of residues 20 and 235 were optimized.  The circled points are predicted to be destabilized by more than 

10 kcal/mol relative to the native. 
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Experimental Calculated Sequence 
Dissoc. energy 

(kcal/mol) Source 
Dissoc. energy 

(kcal/mol) 
Stability vs. native 

(kcal/mol) 10 14 16 17 20 64 89 90 108 145 147 151 204 205 232 235 259 
9.40 2 40.98 0.00 LYS GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
9.15 3 36.45 1.64 LYS GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
8.53 2 44.22 -6.62 LYS GLU TRP PHE GLU CYS ASP ASP LEU LEU THR ARG MET ASN ASN ASP HIS 
7.81 3 34.47 -0.16 LYS GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
6.47 3 38.16 0.36 LYS GLU TRP PHE GLU CYS ASP ASP MET VAL THR ARG MET ASN ASN ASP HIS 
6.47 3 33.07 -5.50 LYS GLU TRP PHE GLU CYS ASP ASP MET VAL ALA ARG MET ASN ASN ASP HIS 
6.47 3 30.43 1.54 LYS GLU TRP PHE GLU CYS ASP ASP MET ALA SER ARG MET ASN ASN ASP HIS 
5.18 1 18.80 -17.56 LYS GLU TRP TRP GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
5.13 3 37.01 1.16 ASN GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
5.13 3 29.75 0.66 ASN GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
5.13 3 29.63 -0.38 VAL GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
5.13 3 27.86 -1.87 LYS GLU TRP PHE GLU CYS ASP ASP MET ALA ALA ARG MET ASN ASN ASP HIS 
5.13 3 26.59 1.08 VAL GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
5.13 3 25.67 0.76 ASN GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
5.13 3 25.50 3.85 GLN GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
5.13 3 25.07 3.44 GLN GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
5.07 1 17.00 -10.95 LYS ILE TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
3.83 3 23.77 5.02 LYS GLU TRP PHE GLU CYS ASP ALA MET LEU SER ARG MET ASN ASN ASP HIS 
3.79 3 35.24 1.19 VAL GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
3.79 3 33.08 -1.52 LYS GLU TRP PHE GLU CYS ASP ASP MET ASP ALA ARG MET ASN ASN ASP HIS 
3.79 3 32.72 2.31 LYS GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
3.79 3 26.34 7.93 LYS GLU TRP PHE GLU CYS ASP ASP MET ASP SER ARG MET ASN ASN ASP HIS 
3.79 3 25.60 6.73 GLN GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
3.79 3 20.21 -2.70 LYS GLU TRP PHE GLU CYS ASP ALA MET ASP SER ARG MET ASN ASN ASP HIS 
3.79 3 19.29 11.30 ASN GLU TRP PHE GLU CYS ASP ALA MET LEU SER ARG MET ASN ASN ASP HIS 

< 3.22 3 28.95 8.43 LYS GLU TRP PHE GLU CYS ASP ALA MET VAL THR ARG MET ASN ASN ASP HIS 
< 3.22 3 24.88 1.13 LYS GLU TRP PHE GLU CYS ASP ALA MET VAL ALA ARG MET ASN ASN ASP HIS 
< 3.22 3 23.83 7.24 VAL GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
< 3.22 3 23.04 12.50 GLN GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
< 3.22 3 22.29 7.09 VAL GLU TRP PHE GLU CYS ASP ALA MET LEU SER ARG MET ASN ASN ASP HIS 
< 3.22 3 22.00 11.12 ASN GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
< 3.22 3 19.86 6.98 LYS GLU TRP PHE GLU CYS ASP ALA MET ALA ALA ARG MET ASN ASN ASP HIS 
< 3.22 3 19.58 10.52 LYS GLU TRP PHE GLU CYS ASP ALA MET ALA SER ARG MET ASN ASN ASP HIS 
< 3.22 3 15.93 12.81 LYS GLU TRP PHE GLU CYS ASP ALA MET VAL SER ARG MET ASN ASN ASP HIS 
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Table 2.  Predicted and calculated arabinose dissociation energy of ABP mutants. 

Top line shows the native sequence, and mutations are bolded.  Data sources: 1. present work; 2. reference 87; 3. reference 86. 
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Binding site design 

 The final and most stringent test of the molecular mechanics energy model was 

a redesign of the binding site in RBP (Figure 15).  We discarded the ligand 

coordinates, and the sequence and coordinates of the 10 residues contacting the ligand.  

The total size of the sequence space searched was 1710 = 2.0 × 1012 (Gly, Pro, and Cys 

were not allowed).  The calculation was initiated from a population of random 

sequences.  After evaluation of 8888 sequences, the energy function identified a point 

mutant (N13L) of native RBP as the tightest binding sequence.  After 8964 sequences, 

it picked native RBP as the second tightest binding sequence.  Evaluation of an 

additional 8879 sequences did not yield any further improvement.  The entire process 

was repeated with a different random initial sequence population, and the same 

optimal sequences were selected. During the course of the design, first stability was 

achieved, then hydrogen bonding, and finally shape complementarity.  The same 

pattern has been seen experimentally in the affinity maturation of antibodies against 

lysozyme.88 

 We experimentally tested the three top sequences from four different RBP-

ribose redesign calculations to determine which aspects of the design algorithm were 

essential (Table 3).  Decreasing the rotamer resolution (row a), omitting the final 

continuous minimization step (row b), or using a less accurate electrostatics model 

(row c) produces sequences that bind very weakly.  Only when we use a high 

resolution rotamer library, a final continuous minimization step, and accurate 

electrostatics, does the design algorithm predict sequences that bind well (row d). 
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 Prior to adding the stability requirement to the design calculation, all of our 

designed proteins expressed at very low concentrations in E. coli, probably because of 

proteolysis.  After adding the stability requirement, the calculation predicts the top 

redesigned sequence (N13L point mutant) to be 1.5 kcal/mol more stable than the 

native RBP.  Experimentally, this sequence is 1.2 kcal/mol more stable than the native 

(3.7 vs 2.5 kcal/mol, measured from urea denaturation curves89).  We have not 

measured unfolding free energies for the remaining proteins. 
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Figure 15.  Redesigning the ribose binding site in RBP. 

Positions identical to the native are highlighted in yellow.  The figure shows the best sequence as a function of the number of sequences 

considered, using either the mean field dissociation energy as the criterion (blue trajectories) or alternatively the dissociation energy calculated 

using minimized structures (red trajectories).  All sequences with a mean field dissociation energy greater than 30 kcal/mol (corresponding to -
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7.5 kcal/mol relative to the native sequence, dashed line) were locally energy minimized to generate the red trajectory.  Sequence 8871 is the 

top sequence when ranked by mean field dissociation energy (corresponding to Table 3b), and sequence 8888 is the top sequence when 

ranked by minimized dissociation energy (corresponding to Table 3d).  The native sequence was found out of a possible 2×1012 sequences 

after 8964 sequence evaluations.  Dissociation and unfolding energies are reported in kcal/mol, relative to the native sequence.  The number of 

protein-ligand hydrogen bonds was determined using bndlst.90  Shape complementarity (which ranges from 0 for perfectly non-complementary 

surfaces to 1 for perfectly complementary surfaces) was calculated using sc.91  Backbone coordinates for the bound state are from 2DRI, and 

backbone coordinates for the unbound state are from 1URP. 
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Design 
calc. 

Rotamers 
per 
position 

Local 
minimization

Solvent 
treatment 

 Rank # of residues 
identical to 
native 

Kd (experimental) Sequence (10 
primary contacts)

    1 3 210 ± 80 mM* NIMLMMFNAN 

(a) 2800 yes Lee 2 4 8.8 ± 0.4 mM* NFMLNMFNAN 

    3 4 83 ± 32 mM* NFMLMMFNAN 

    1 8 12 ± 0.9 mM* NFFDRRFSSQ 

(b) 5449 no Lee 2 9 48 ± 13 mM* NFFDRRFNSQ 

    3 8 84 ± 10 mM* NMFDRRFNSQ 

    1 6 99 ± 2 mM* NYYDRRYNAQ 

(c) 5449 yes Qiu 2 6 84 ± 2 mM* NYMDRRYNSQ 

    3 7 13 ± 1 mM* NYFDRRYNAQ 

    1 9 19 ± 8 μM† LFFDRRFNDQ 

(d) 5449 yes Lee 2 10 0.30 ± 0.07 μM† NFFDRRFNDQ 

    3 9 80 ± 2 μM† NTFDRRFNDQ 

Native      10 0.30 ± 0.07 μM† NFFDRRFNDQ 

 
Table 3.  High resolution rotamer library, gradient-based local minimization, and an accurate solvation model are required to successfully 

redesign the ribose binding site in RBP. 

Multiple design calculations (a–d) were performed using different sampling resolutions and solvent models.  The top three sequences from 

each calculation and their experimentally measured binding constants are shown.  Parts of the sequence identical to the native sequence are 

highlighted in yellow.  (a) Design calculation using a lower resolution rotamer library.  (b) Design calculation without a gradient-based local 

minimization step.  (c) Design calculation using a less accurate generalized Born solvent treatment.92  (d) Design calculation using a high 

resolution rotamer library, gradient-based local minimization, and an accurate generalized Born solvation model.16   Sequences are ranked by 

calculated dissociation energy, allowing 5 kcal/mol destabilization relative to the native sequence for 5449 rotamers / position, and 20 kcal/mol 

destabilization for 2800 rotamers / position.  The native sequence was not within the top 100 sequences for design calculations A, B, or C.  * Kd 

measured using the solid phase radioligand binding assay.  † Kd measured using the centrifugal concentrator assay.  The reported error is the 

standard deviation of 3 measurements. 
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Discussion 

 This paper reports the first successful redesign of an entire binding site based 

on an unmodified molecular-mechanics potential energy function.  This is a stringent 

test of the energy function, because the native sequence and a point mutant are 

distinguished from 2.0 × 1012 alternative sequences.  Good hydrogen bonds and steric 

complementarity were picked out directly by the energy function, without energy 

terms or selection criteria that specifically required these features.  Given that the 

underlying physics is the same for the design of new proteins and for the simulation of 

known proteins, it is satisfying to see that the same energy models can be used as well. 

 We tested a number of simplifications commonly used in protein design 

calculations, and found that they all resulted in less successful predictions.  For 

example, low sampling resolution or an inaccurate solvation model led to sequences 

that lacked critical hydrogen bonds.  Scaling down the electrostatic energy (which is 

frequently done to compensate for a crude electrostatics model) reduced the accuracy 

of the energetic predictions.  Eliminating the unfolded state resulted in unstable 

designed proteins.  Softening the van der Waals interaction allowed atoms to pack 

together more closely, making hydrogen bonds and salt bridges appear artificially 

strong (Figure 28), and resulting in the burial of charged and polar functional groups 

(Table 10). 

 An important conclusion from this work is that MM-PEF’s must be paired with 

an accurate continuum solvent model and with protonation equilibria in order to 

correctly redesign a polar binding site.  Individual polar protein-ligand interactions can 
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exhibit energies up to 100 kcal/mol (the Coulomb energy between unit charges 

separated by 3.3 Å).  These energies are almost exactly counterbalanced by 

interactions with water in the unbound protein.  Thus, small errors in the solvation 

energy grossly alter the design predictions.  Finite difference algorithms are generally 

considered the most accurate methods to solve the Poisson-Boltzmann differential 

equation that defines the continuum solvent model, but they are currently too slow for 

protein design.  Very accurate generalized Born approaches have been developed over 

the last few years,16 and produce solvation energies that differ from the finite 

difference result by only 2% (Figure 20).  We have shown that this level of accuracy is 

both necessary and sufficient for protein design calculations. 

 The results in this paper suggest that the protein design and molecular-

mechanics fields can work together on the same potential energy functions, and that 

future developments in MM-PEFs will be immediately applicable to protein design 

(although ad hoc terms may still be necessary for modeling aggregated and misfolded 

states).  Currently, there are active efforts to develop polarizable potential energy 

functions that more accurately reproduce the physical characteristics of small 

molecules,54,55,68 and hybrid quantum mechanical / molecular mechanical potential 

energy functions that model charge transfer and changes in covalent bonding.93,94  It 

will be exciting to see how these improved energy models will impact the protein 

design problem. 
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Materials and methods 

 

Calculations 

 Protein structures were predicted using a rotamer-based mean field 

algorithm.19  The energy was calculated as the sum of the CHARMM22 molecular-

mechanics energy,14 a generalized Born surface-area solvation energy15,16 using a 

microscopic surface tension95 of 0.0072 kcal/mol/Å2, and a deprotonation energy.96  

The most probable mean field structure was then locally minimized using the L-BFGS 

optimization algorithm97 in TINKER98 to obtain a final structure and energy.  The 

unfolded protein energy was calculated by assuming that the protein backbone adopts 

an ensemble of random walk conformations in water (see ref. 58,99 and p. 81).  The 

stability of the protein was calculated as the energy difference between the unfolded 

protein and the folded unbound protein, and the dissociation energy was calculated as 

the energy difference between the uncomplexed and the complexed protein-ligand 

system.  All calculations were performed at 25°C, pH 7.0, 100 mM monovalent salt.  

Ribose binding proteins were designed using a genetic algorithm20 that optimized the 

calculated ribose dissociation energy, given a 5 kcal/mol limit on protein 

destabilization.  The genetic algorithm was initialized with a population of random 

sequences. Calculations were performed using CNSsolve100, TINKER98, and custom 

code written in C++, and run on a Pentium-based Linux cluster. 
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Protein purification and constructs 

RBP without a periplasmic signal peptide was cloned into the NcoI/XhoI sites of 

pET28a (EMD Biosciences), generating a derivative with a C-terminal His6 tag.  

Mutants were made by Kunkel mutagenesis101 or by QuikChange (Stratagene).  

Protein was expressed in BL21 DE3 E. coli cells (Novagen) with 1 mM IPTG for 5 hr 

at 37°C.  Cells were lysed with lysozyme and sonication in the presence of 1 mM 

phenylmethylsulfonyl fluoride.  Protein was purified by immobilized metal affinity 

chromatography, followed by gel filtration chromatography in 20 mM potassium 

phosphate pH 7.0, 100 mM NaCl.  The purified protein was then concentrated, and its 

final concentration determined by absorbance.102 

 

Centrifugal concentrator radioligand binding assay 

Proteins were diluted into 1 ml of 20 mM potassium phosphate pH 7.0, 100 mM NaCl, 

and 0.5 μCi 1-3H(N)-D-ribose (Moravek).  After equilibration for 30 minutes, the 

samples were placed in centrifugal concentrators (Amicon Ultra, 5 kDa MWCO), and 

centrifuged until at least 500 μl of filtrate had crossed the membrane.  Any filtrate in 

excess of 500 μl was returned to the retentate, and the quantity of radioligand in the 

filtrate and retentate were measured by scintillation counting.  Dissociation constants 

were calculated as 2 2
1 1d

P LK
r r

= −
− +

, where r is the ratio of retentate to filtrate 

radioligand, P is the initial protein concentration, and L is the initial radioligand 

concentration.  We chose conditions where P > Kd and r fell between 1.2 and 20.  The 

analysis depends on the assumption that water and the ligand cross the membrane at 
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equal rates.  This assumption was tested by centrifuging a ribose solution across the 

membrane in the absence of protein; the specific activities of the retentate and filtrate 

were identical to within 4%. 

 

Solid phase radioligand binding assay 

A solid phase radioligand binding assay was used to detect binding with Kd’s in the 

high millimolar range.  Nickel-NTA agarose slurry (Qiagen) was washed and 

resuspended in buffer (20 mM potassium phosphate pH 7.0 and 100 mM NaCl) to 

form a 50% (v/v) slurry.  Twenty microliters of the slurry were mixed with 5 nmol of 

His6-tagged protein and 1.0 μCi of radioligand in a final buffer volume of 50 μl.  

Following a 30 minute equilibration, the mixture was transferred to 0.45 μm 

centrifugal filter units (Millipore #UFC30HV0S) and centrifuged at 12000×g for 2 

minutes to remove unbound ligand.  The resin was washed three times by addition of 

500 μl of 50 % ethanol and centrifugation at 12000×g for 2 minutes.  The bound 

ligand was eluted with 250 μl guanidinium HCl, and quantified by scintillation 

counting.  Radioligand eluted from a no-protein control was included to account for 

non-specific binding to the resin, and a control of 0.5 μCi radioligand was used to 

determine counting efficiency.  Dissociation constants were calculated as 

2

d
L Lr Pr PrK

r
− − +

= , where r is the fraction of protein bound to radioligand, P is 

the initial protein concentration, and L is the initial ligand concentration. 
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