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Chapter 1: Introduction 
 

 Proteins are the ultimate nanotechnology devices.  Inside our cells, these 

molecular machines do all sorts of fantastic things ⎯ catalyze chemical reactions, 

create the electrical signals in neurons, copy DNA, move vesicles around, transmit 

information, and generally get the job done inside our bodies.  Many of these 

functions have been studied and worked out in great detail, a triumph of modern 

molecular biology. 

 The inimitable Richard Feynman, a great source to consult for practical 

scientific philosophy, wrote that “What I can not create I can not understand.”  So in 

that spirit, we believe that if we claim to understand how proteins work, we should be 

able to make predictions about their behavior, and if we really understand how they 

work, we should be able to design proteins with new functions.  Thus, we employ an 

engineering approach to protein design, meaning that we start with a physical model 

of how proteins work, and we use this model to predict how mutations affect a 

protein’s activity, and to design proteins with new functions. 

 

 

Relationship to the protein folding problem 

 The protein folding problem asks if you can predict the structure of a protein, 

given its amino acid sequence.  The protein design problem asks if you can find an 

amino acid sequence that folds into a particular structure.  Which problem is harder?  

Can you solve one without solving the other? 
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 We believe that proteins can be designed computationally without solving the 

protein folding problem, and that this approach will provide unique insights into how 

proteins work.  From one perspective, design is easier than folding: out of the millions 

of sequences that fold into your target structure, you only need to find one of them.  

From another perspective, design is harder than folding: the design algorithm will 

exploit any flaws in your protein energy calculations if they appear to stabilize the 

target structure. 

 

 

Design goal 

 The overall goal is to develop an algorithm that will take the structure of a 

scaffold protein, and the structure of a small molecule, and design a set of mutations 

needed to create a binding site in the scaffold.  We only consider mutations at a 

limited number of “design positions”; the rest of the protein simply serves as a rigid 

structure for constraining the conformational flexibility of the designed binding site.  

Thus, we only need to consider a limited range of protein conformations and do not 

need to solve the full protein folding problem. 

 The ideal scaffold protein can host a wide range of different binding sites.  It 

should be stable, so it can accommodate destabilizing mutations.  The proposed 

binding site should also be lined with sidechain contacts, which will be easier to 

modify by mutation than backbone contacts.  Natural scaffold proteins include 

antibodies, which bind different antigens, and alpha/beta barrel proteins, which host a 

wide range of enzyme active sites.1  In this thesis, we use ribose binding protein, based 
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on the pioneering work of Hellinga,2,3 who used this as a scaffold for computational 

protein design (although note that ref. 3 was recently retracted4). 

 

 

Innovative aspects of the research 

 The computational protein design field is small, but has seen some remarkable 

successes.2,5-13  In each of these examples, the protein was designed in a computer, 

then experimentally validated with a crystal structure or activity measurement (Figure 

1).  However, the generality of these design algorithms is unclear, because each lab 

typically uses its own custom software, and standard models for protein design have 

not yet emerged.  Furthermore, protein design typically requires multiple iterations of 

feedback from experimental results before reaching the desired target.  We would like 

to address these problems using better sampling strategies and more accurate energy 

functions.  

 Many of the individual components of our design calculation are related to 

algorithms that have been proposed and validated before in the literature, including the 

molecular mechanics potential energy function,14 continuum solvent model,15,16 side 

chain rotamer library,17 ligand docking procedure,18 probabilistic description of 

protein conformation and mean field algorithm,19 multi-state design framework,9 and 

genetic algorithm.20 

 The unique aspect of this project is the combination of these existing methods 

to tackle interesting design problems.  This integration has never been achieved 

before, partly because of the technical difficulty, and partly because others in this field 
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have broken down the design problem into different pieces.  Especially notable is our 

treatment of ligand flexibility, protonation equilibria, conformational entropy, high 

resolution structural sampling, accurate continuum solvation model, and explicit 

unbound and unfolded reference states.  These factors are often ignored in protein 

design calculations, despite evidence that they are important in ligand binding. 

 

Serotonin receptor (right) created from an 
arabinose receptor (left)2 

        
 

Protein with a new α/β fold7 
 

 
predicted structure / crystal structure 

 
Designed retro-aldolase13 

 
predicted structure / crystal structure / 

transition state model 

designed protein-protein interface21 

 
predicted structure / crystal structure 

 
Specific coiled-coil interactions 9 

 
 
Figure 1.  Examples of computational protein design. 
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Models for understanding molecular recognition 

 Qualitatively, specific molecular recognition occurs between molecules with 

steric complementarity and chemical complementarity (charge patterning and 

hydrogen bonding)22 (see Figure 2).  Steric complementarity is important both for 

producing favorable van der Waals interactions between ligand and receptor, and also 

for preventing the formation of buried pockets of water.  Charge patterning is 

important for specificity.  In water, intermolecular interactions are often strengthened 

when salt bridges are replaced with uncharged groups.  Thus, charge patterning does 

not always create the most stable complexes.  It does, however, confer specificity: a 

single charge buried in a molecular interface without a salt bridge partner is extremely 

unfavorable, thus preventing ligands with the wrong charge pattern from binding. 

 

Steric complementarity 
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Figure 2.  Qualitative model of molecular recognition. 
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 While a qualitative understanding is the most intuitive way to think about 

molecular recognition, it does have limitations.  Each molecular interface contains 

many favorable and unfavorable interactions, so it is difficult to know whether the 

interaction is net favorable without adding up the actual strength of each interaction.  

Furthermore, protein backbone and side chain conformations shift in response to 

mutations, and these conformational changes are difficult to predict by just eyeballing 

the structure. 

 If qualitative understanding is one extreme, the other extreme is a full quantum 

mechanical treatment of the protein and solvent.  From this perspective, the energy of 

the system is solely based on Coulomb’s law interactions between electrons and 

nuclei, and the evolution of the system is given by the Schrödinger equation.  In 

addition to being totally impractical computationally, this approach also clouds our 

understanding of the system: all of the energy is electrostatic and is not partitioned 

into more understandable categories. 

 Fortunately, over the past thirty years, several groups have developed 

molecular mechanics potential energy functions (Figure 6), which model proteins as a 

collection of atoms connected by springs that hold bond lengths and angles near their 

standard values.  A torsion angle energy term penalizes eclipsed conformations.  

Standard molecular mechanics potentials also include two energy terms for atoms that 

are not bonded to each other: van der Waals interactions, and Coulomb’s law 

interactions between charges.  Some versions also include a hydrogen-bonding term, 

but often this is handled by the van der Waals and Coulomb’s law terms. 
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 These molecular mechanics potentials are typically used in molecular 

dynamics simulations, which trace protein motions over time.  At each time step, the 

computer uses the molecular mechanics potential to calculate a force on each atom, 

then uses the force to update its velocity and position.  Unfortunately, most of the 

computer time is spent simulating water molecules, even though the protein is usually 

the molecule of interest.  Water does significantly affect the behavior of the protein, 

but fortunately many of these effects can be understood in a smeared-out continuum 

model.  First, water solvates charges: it exerts an attractive force pulling both positive 

and negative charges towards the protein’s surface.  Second, water screens charges: 

interactions between charges in a vacuum are weakened by a factor of 80 when they 

are placed in water.  Third, water’s hydrogen bond network is disrupted at the protein 

surface: this is why oil does not dissolve in water.  The first two factors can be treated 

by modeling water as a continuum dielectric, and the third factor can be treated with a 

surface tension term. 

 

 

Finding a protein’s low energy conformations 

 Even when water is treated in a continuum model, molecular dynamics is 

extremely slow, because the simulation typically proceeds in femtosecond time steps.  

Simulating a 1 second unbinding event would take 1 million years of time on a typical 

desktop computer. 

 Most of the time in a molecular dynamics simulation, the protein is simply 

jiggling around some equilibrium conformation.  Every once in a while, the protein 
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crosses an energetic barrier and settles into another conformation.  To speed up the 

calculation, can we just skip these barriers and directly identify the low energy 

conformations?  Our strategy for doing this is to break the protein-ligand system into 

three parts: protein backbone conformation, protein side chain conformation, and 

ligand position / conformation.  Then, we can find the low energy configurations of 

each part, and mix and match these low energy conformations to explore the whole 

system’s conformational space. 

 To find the low energy conformations of the protein backbone at design 

positions, we use the following rather elaborate scheme (all of the simpler strategies 

we tried missed some conformations).  First, we take snapshots from a high 

temperature molecular dynamics simulations.  Second, we sample the backbone φ and 

ψ angles on a 30° grid.  Third, we search the entire Protein Data Bank for loops whose 

endpoints match the fixed portions of our protein scaffold.  Finally, we feed all of 

these conformations into a genetic algorithm search, which randomly perturbs and 

splices together structures to generate new structures. 

 To find the low energy protein side chain conformations, we clustered side 

chain conformations observed in the Protein Data Bank into a rotamer library, placed 

rotamers at each design position, and applied an energy cutoff to eliminate 

unfavorable rotamers (Figure 3). 
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Low energy loop conformations 
 
 

 

Low energy sidechain conformations 

 
 
Figure 3.  Low energy protein conformations. 

 

 To find the low energy docked ligand positions / conformations, we move the 

ligand over a translational and rotational grid, and eliminate ligand orientations that 

clash with the scaffold, or do not make sufficient contact with side chains at design 

positions. 

 One advantage of identifying all of the low-energy configurations of the 

protein-ligand system at the beginning of the calculation is that all of the energy terms 

can be precomputed (both intrinsic energies and interaction energy matrices).  These 

are calculated using a standard molecular mechanics potential with continuum water, 

as described in the previous section.  After making this initial investment of 

computing time, the energy of a specific configuration of the protein-ligand system 

can be rapidly calculated simply by adding up the appropriate terms from the 

precomputed energy matrices. 
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Probabilistic description of protein conformation 

 We represent the protein/ligand system as a probabilistic ensemble of the low 

energy backbone, side chain, and ligand conformations/positions (Figure 4).  The 

probabilities are set by a mean field calculation,19 which iteratively updates the 

probability of each side chain and ligand conformation based on its intrinsic energy 

plus its probability weighted interaction energies. 

 The probabilistic ensemble allows us to model conformational changes and 

thermal fluctuations.  Mutating design positions to different amino acids may shift the 

protein conformation, and this shift will be described as a change in the probabilities 

of various conformations.  A single rigid structure would be described by setting the 

probability of a single conformation to 1 and everything else to 0.  However, in order 

to accurately calculate ligand binding affinity, it is important to model the protein’s 

thermal fluctuations by allowing probabilities besides 0 and 1.  The probabilistic 

model is more realistic, because proteins spend very little time in their global 

minimum potential energy conformation.  Furthermore, if the protein can adopt 1000 

conformations and only 1 of them binds ligand, then this decreases its binding affinity 

by 1000-fold.  We can model these sorts of entropic effects using a probabilistic 

model. 

 Once the probabilities from the mean field calculation have converged, we can 

calculate the free energy of the system by adding the probability weighted average 

energy, and the energy due to the conformational entropy. 
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Probabilistic ensemble of loop 
conformations 

 
 
 
 

25% 75%

 

Probabilistic ensemble of sidechain 
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Figure 4.  Probabilistic model of protein structure. 

 

 

Evolving binding sites 

 An important point is that, experimentally, we can only control the amino acid 

sequence.  The structure of the protein is determined by the energetics.  Thus, we 

separate our sequence and structural optimization. 

 Using the procedure described above, we can calculate the free energy of 

several different states, given the amino acid sequence at design positions: the protein 

and ligand free in solution, the protein bound to various different ligands, and the 

unfolded protein.  From these energies, we can calculate the stability of the protein, 

and its affinity and specificity for various ligands.  Based on these energies, we can 

assign a score to each sequence.  The score can also include structural criteria, such as 

the predicted geometry of catalytic residues. 

 We use a genetic algorithm20 to evolve sequences that optimize our chosen 

scoring function.  The genetic algorithm starts with a population of random sequences, 
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and then alternates between rounds of selection and recombination/mutation (Figure 

24 on p. 85). 




