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Abstract 
 

 Different potential energy functions have been used in protein dynamics 

simulations, protein design calculations, and protein structure prediction.  Clearly, the 

same physics applies in all three cases, so the variation in potential energy functions 

reflects differences in how the calculations are performed.  With improvements in 

computer power and algorithms, the same potential energy function should be 

applicable to all three problems. 

 Here we show that a standard molecular-mechanics potential energy function 

without any modifications can be used to engineer protein-ligand binding.  A 

molecular-mechanics potential is used to reconstruct the coordinates of various 

binding sites with an average root mean square error of 0.61 Å, and to reproduce 

known ligand-induced side-chain conformational shifts.  Within a series of 34 

mutants, the calculation can always distinguish weak (Kd > 1 mM) and tight (Kd < 10 

μM) binding sequences.  Starting from partial coordinates of the ribose binding 

protein lacking the ligand and the ten primary contact residues, the molecular-

mechanics potential is used to redesign a ribose binding site.  Out of a search space of 

2×1012 sequences, the calculation selects a point mutant of the native protein as the top 

solution (experimental Kd = 17 μM), and the native protein as the second best solution 

(experimental Kd = 210 nM).  The quality of the predictions depends on the accuracy 

of the generalized Born electrostatics model, treatment of protonation equilibria, high 

resolution rotamer sampling, a final local energy minimization step, and explicit 

modeling of the bound, unbound, and unfolded states. 
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 After this initial proof of principle experiment, we next used a standard 

molecular mechanics potential energy function to redesign ribose binding protein to 

bind a series of ligands: L-arabinose, D-xylose, indole-3-acetic acid, and estradiol.  

The resulting proteins have 5 – 10 mutations from the native, are stable, the predicted 

structures have good hydrogen bonds and shape complementarity, and they use motifs 

similar to natural binding proteins.  All of the designed proteins bind to their target 

ligands with measurable but weak affinity.  The affinity was improved by random 

mutagenesis and screening. 

 The application of unmodified molecular-mechanics potentials to protein 

design links two fields in a mutually beneficial way.  Design provides a new avenue to 

test molecular-mechanics energy functions, and future improvements in these energy 

functions will presumably lead to more accurate design results. 

 This is the first time a single model has been used to predict structures, binding 

constants, and to design new small-molecule binding sites.  Using a standard model 

should improve the generality of protein design, which could enable the creation of 

custom proteins for a wide variety of applications, including sensors, enzymes, and 

protein therapeutics. 
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Chapter 1: Introduction 
 

 Proteins are the ultimate nanotechnology devices.  Inside our cells, these 

molecular machines do all sorts of fantastic things ⎯ catalyze chemical reactions, 

create the electrical signals in neurons, copy DNA, move vesicles around, transmit 

information, and generally get the job done inside our bodies.  Many of these 

functions have been studied and worked out in great detail, a triumph of modern 

molecular biology. 

 The inimitable Richard Feynman, a great source to consult for practical 

scientific philosophy, wrote that “What I can not create I can not understand.”  So in 

that spirit, we believe that if we claim to understand how proteins work, we should be 

able to make predictions about their behavior, and if we really understand how they 

work, we should be able to design proteins with new functions.  Thus, we employ an 

engineering approach to protein design, meaning that we start with a physical model 

of how proteins work, and we use this model to predict how mutations affect a 

protein’s activity, and to design proteins with new functions. 

 

 

Relationship to the protein folding problem 

 The protein folding problem asks if you can predict the structure of a protein, 

given its amino acid sequence.  The protein design problem asks if you can find an 

amino acid sequence that folds into a particular structure.  Which problem is harder?  

Can you solve one without solving the other? 
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 We believe that proteins can be designed computationally without solving the 

protein folding problem, and that this approach will provide unique insights into how 

proteins work.  From one perspective, design is easier than folding: out of the millions 

of sequences that fold into your target structure, you only need to find one of them.  

From another perspective, design is harder than folding: the design algorithm will 

exploit any flaws in your protein energy calculations if they appear to stabilize the 

target structure. 

 

 

Design goal 

 The overall goal is to develop an algorithm that will take the structure of a 

scaffold protein, and the structure of a small molecule, and design a set of mutations 

needed to create a binding site in the scaffold.  We only consider mutations at a 

limited number of “design positions”; the rest of the protein simply serves as a rigid 

structure for constraining the conformational flexibility of the designed binding site.  

Thus, we only need to consider a limited range of protein conformations and do not 

need to solve the full protein folding problem. 

 The ideal scaffold protein can host a wide range of different binding sites.  It 

should be stable, so it can accommodate destabilizing mutations.  The proposed 

binding site should also be lined with sidechain contacts, which will be easier to 

modify by mutation than backbone contacts.  Natural scaffold proteins include 

antibodies, which bind different antigens, and alpha/beta barrel proteins, which host a 

wide range of enzyme active sites.1  In this thesis, we use ribose binding protein, based 
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on the pioneering work of Hellinga,2,3 who used this as a scaffold for computational 

protein design (although note that ref. 3 was recently retracted4). 

 

 

Innovative aspects of the research 

 The computational protein design field is small, but has seen some remarkable 

successes.2,5-13  In each of these examples, the protein was designed in a computer, 

then experimentally validated with a crystal structure or activity measurement (Figure 

1).  However, the generality of these design algorithms is unclear, because each lab 

typically uses its own custom software, and standard models for protein design have 

not yet emerged.  Furthermore, protein design typically requires multiple iterations of 

feedback from experimental results before reaching the desired target.  We would like 

to address these problems using better sampling strategies and more accurate energy 

functions.  

 Many of the individual components of our design calculation are related to 

algorithms that have been proposed and validated before in the literature, including the 

molecular mechanics potential energy function,14 continuum solvent model,15,16 side 

chain rotamer library,17 ligand docking procedure,18 probabilistic description of 

protein conformation and mean field algorithm,19 multi-state design framework,9 and 

genetic algorithm.20 

 The unique aspect of this project is the combination of these existing methods 

to tackle interesting design problems.  This integration has never been achieved 

before, partly because of the technical difficulty, and partly because others in this field 
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have broken down the design problem into different pieces.  Especially notable is our 

treatment of ligand flexibility, protonation equilibria, conformational entropy, high 

resolution structural sampling, accurate continuum solvation model, and explicit 

unbound and unfolded reference states.  These factors are often ignored in protein 

design calculations, despite evidence that they are important in ligand binding. 

 

Serotonin receptor (right) created from an 
arabinose receptor (left)2 

        
 

Protein with a new α/β fold7 
 

 
predicted structure / crystal structure 

 
Designed retro-aldolase13 

 
predicted structure / crystal structure / 

transition state model 

designed protein-protein interface21 

 
predicted structure / crystal structure 

 
Specific coiled-coil interactions 9 

 
 
Figure 1.  Examples of computational protein design. 
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Models for understanding molecular recognition 

 Qualitatively, specific molecular recognition occurs between molecules with 

steric complementarity and chemical complementarity (charge patterning and 

hydrogen bonding)22 (see Figure 2).  Steric complementarity is important both for 

producing favorable van der Waals interactions between ligand and receptor, and also 

for preventing the formation of buried pockets of water.  Charge patterning is 

important for specificity.  In water, intermolecular interactions are often strengthened 

when salt bridges are replaced with uncharged groups.  Thus, charge patterning does 

not always create the most stable complexes.  It does, however, confer specificity: a 

single charge buried in a molecular interface without a salt bridge partner is extremely 

unfavorable, thus preventing ligands with the wrong charge pattern from binding. 

 

Steric complementarity 
 
 

 
Streptavidin and biotin 

Chemical complementarity 
 

 
H-bonding 
 
 
Charge patterning 
 
 
Pi stacking 
 
 
Hydrophobic 

+
–

–
+

O NH

 

Entropy 
 

 
 
Figure 2.  Qualitative model of molecular recognition. 
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 While a qualitative understanding is the most intuitive way to think about 

molecular recognition, it does have limitations.  Each molecular interface contains 

many favorable and unfavorable interactions, so it is difficult to know whether the 

interaction is net favorable without adding up the actual strength of each interaction.  

Furthermore, protein backbone and side chain conformations shift in response to 

mutations, and these conformational changes are difficult to predict by just eyeballing 

the structure. 

 If qualitative understanding is one extreme, the other extreme is a full quantum 

mechanical treatment of the protein and solvent.  From this perspective, the energy of 

the system is solely based on Coulomb’s law interactions between electrons and 

nuclei, and the evolution of the system is given by the Schrödinger equation.  In 

addition to being totally impractical computationally, this approach also clouds our 

understanding of the system: all of the energy is electrostatic and is not partitioned 

into more understandable categories. 

 Fortunately, over the past thirty years, several groups have developed 

molecular mechanics potential energy functions (Figure 6), which model proteins as a 

collection of atoms connected by springs that hold bond lengths and angles near their 

standard values.  A torsion angle energy term penalizes eclipsed conformations.  

Standard molecular mechanics potentials also include two energy terms for atoms that 

are not bonded to each other: van der Waals interactions, and Coulomb’s law 

interactions between charges.  Some versions also include a hydrogen-bonding term, 

but often this is handled by the van der Waals and Coulomb’s law terms. 
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 These molecular mechanics potentials are typically used in molecular 

dynamics simulations, which trace protein motions over time.  At each time step, the 

computer uses the molecular mechanics potential to calculate a force on each atom, 

then uses the force to update its velocity and position.  Unfortunately, most of the 

computer time is spent simulating water molecules, even though the protein is usually 

the molecule of interest.  Water does significantly affect the behavior of the protein, 

but fortunately many of these effects can be understood in a smeared-out continuum 

model.  First, water solvates charges: it exerts an attractive force pulling both positive 

and negative charges towards the protein’s surface.  Second, water screens charges: 

interactions between charges in a vacuum are weakened by a factor of 80 when they 

are placed in water.  Third, water’s hydrogen bond network is disrupted at the protein 

surface: this is why oil does not dissolve in water.  The first two factors can be treated 

by modeling water as a continuum dielectric, and the third factor can be treated with a 

surface tension term. 

 

 

Finding a protein’s low energy conformations 

 Even when water is treated in a continuum model, molecular dynamics is 

extremely slow, because the simulation typically proceeds in femtosecond time steps.  

Simulating a 1 second unbinding event would take 1 million years of time on a typical 

desktop computer. 

 Most of the time in a molecular dynamics simulation, the protein is simply 

jiggling around some equilibrium conformation.  Every once in a while, the protein 
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crosses an energetic barrier and settles into another conformation.  To speed up the 

calculation, can we just skip these barriers and directly identify the low energy 

conformations?  Our strategy for doing this is to break the protein-ligand system into 

three parts: protein backbone conformation, protein side chain conformation, and 

ligand position / conformation.  Then, we can find the low energy configurations of 

each part, and mix and match these low energy conformations to explore the whole 

system’s conformational space. 

 To find the low energy conformations of the protein backbone at design 

positions, we use the following rather elaborate scheme (all of the simpler strategies 

we tried missed some conformations).  First, we take snapshots from a high 

temperature molecular dynamics simulations.  Second, we sample the backbone φ and 

ψ angles on a 30° grid.  Third, we search the entire Protein Data Bank for loops whose 

endpoints match the fixed portions of our protein scaffold.  Finally, we feed all of 

these conformations into a genetic algorithm search, which randomly perturbs and 

splices together structures to generate new structures. 

 To find the low energy protein side chain conformations, we clustered side 

chain conformations observed in the Protein Data Bank into a rotamer library, placed 

rotamers at each design position, and applied an energy cutoff to eliminate 

unfavorable rotamers (Figure 3). 
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Low energy loop conformations 
 
 

 

Low energy sidechain conformations 

 
 
Figure 3.  Low energy protein conformations. 

 

 To find the low energy docked ligand positions / conformations, we move the 

ligand over a translational and rotational grid, and eliminate ligand orientations that 

clash with the scaffold, or do not make sufficient contact with side chains at design 

positions. 

 One advantage of identifying all of the low-energy configurations of the 

protein-ligand system at the beginning of the calculation is that all of the energy terms 

can be precomputed (both intrinsic energies and interaction energy matrices).  These 

are calculated using a standard molecular mechanics potential with continuum water, 

as described in the previous section.  After making this initial investment of 

computing time, the energy of a specific configuration of the protein-ligand system 

can be rapidly calculated simply by adding up the appropriate terms from the 

precomputed energy matrices. 
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Probabilistic description of protein conformation 

 We represent the protein/ligand system as a probabilistic ensemble of the low 

energy backbone, side chain, and ligand conformations/positions (Figure 4).  The 

probabilities are set by a mean field calculation,19 which iteratively updates the 

probability of each side chain and ligand conformation based on its intrinsic energy 

plus its probability weighted interaction energies. 

 The probabilistic ensemble allows us to model conformational changes and 

thermal fluctuations.  Mutating design positions to different amino acids may shift the 

protein conformation, and this shift will be described as a change in the probabilities 

of various conformations.  A single rigid structure would be described by setting the 

probability of a single conformation to 1 and everything else to 0.  However, in order 

to accurately calculate ligand binding affinity, it is important to model the protein’s 

thermal fluctuations by allowing probabilities besides 0 and 1.  The probabilistic 

model is more realistic, because proteins spend very little time in their global 

minimum potential energy conformation.  Furthermore, if the protein can adopt 1000 

conformations and only 1 of them binds ligand, then this decreases its binding affinity 

by 1000-fold.  We can model these sorts of entropic effects using a probabilistic 

model. 

 Once the probabilities from the mean field calculation have converged, we can 

calculate the free energy of the system by adding the probability weighted average 

energy, and the energy due to the conformational entropy. 
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Probabilistic ensemble of loop 
conformations 

 
 
 
 

25% 75%

 

Probabilistic ensemble of sidechain 
conformations 

20% 

40% 

40%

 
 
Figure 4.  Probabilistic model of protein structure. 

 

 

Evolving binding sites 

 An important point is that, experimentally, we can only control the amino acid 

sequence.  The structure of the protein is determined by the energetics.  Thus, we 

separate our sequence and structural optimization. 

 Using the procedure described above, we can calculate the free energy of 

several different states, given the amino acid sequence at design positions: the protein 

and ligand free in solution, the protein bound to various different ligands, and the 

unfolded protein.  From these energies, we can calculate the stability of the protein, 

and its affinity and specificity for various ligands.  Based on these energies, we can 

assign a score to each sequence.  The score can also include structural criteria, such as 

the predicted geometry of catalytic residues. 

 We use a genetic algorithm20 to evolve sequences that optimize our chosen 

scoring function.  The genetic algorithm starts with a population of random sequences, 
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and then alternates between rounds of selection and recombination/mutation (Figure 

24 on p. 85). 
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Chapter 2: Potential energy functions for 
protein design 

 

This chapter has been adapted from: Boas FE and Harbury PB. (2007) “Potential 

energy functions for protein design.”  Current Opinion in Structural Biology. 17: 199-

204. 

 

 

Summary 

Different potential energy functions have been used in protein dynamics simulations, 

protein design calculations, and protein structure prediction.  Clearly, the same physics 

applies in all three cases, so the variation in potential energy functions reflects 

differences in how the calculations are performed.  With improvements in computer 

power and algorithms, the same potential energy function should be applicable to all 

three problems.  Recently improved models of polarization, the hydrophobic effect, 

and hydrogen bonding may be applicable to both molecular mechanics and protein 

design. 

 

 

Introduction 

 Computational protein design algorithms use models of protein energetics to 

engineer protein sequences with new functions.  This is similar to more established 

branches of engineering, such as circuit simulation or stability analysis of buildings, 
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where accurate computer models are used to evaluate designs before they are built.  

Protein design provides a rigorous test of the energetic model that is used, because the 

design algorithm must pick functional sequences out of an astronomically large space 

of non-functional sequences. 

 As with any calculation, there is a tradeoff between accuracy and speed when 

modeling or designing proteins.  For example, simulation of a one-second dissociation 

event using a molecular dynamics calculation with explicit water would require 10 

million years on a typical desktop computer.  Protein design algorithms use several 

strategies to speed up the process.  First, protein design algorithms do not simulate 

kinetics, but rather calculate the energies of a small number of target states (these 

energies are used as a surrogate for the free energies of conformational 

neighborhoods).  Many fast algorithms exist for optimizing the structure of each target 

state.  Second, protein design calculations do not explicitly model water, but rather use 

a continuum representation of water.  Finally, protein design algorithms generally use 

less computationally intensive energy functions than molecular mechanics 

calculations. 

 Previous reviews have described potential energy functions (PEFs) used for 

molecular mechanics simulations,23,24 protein design,25,26 and protein structure 

prediction.27  In this review, we compare these energy functions (Figure 5).  We also 

describe advances in the molecular mechanics field that could be used in the next 

generation of design algorithms. 
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Quantum 
mechanics 

 Molecular mechanics 
(explicit solvent) 

 Molecular mechanics 
(continuum solvent) 

 Heuristic 

 
Coulomb’s law 
Schrödinger equation 

  
Bonded: 
     Bond length 
     Bond angle 
     Torsion angle 
 
Non-bonded: 
     Lennard Jones 
     Coulomb’s law 
 

  
Bonded: 
     Bond length 
     Bond angle 
     Torsion angle 
 
Non-bonded: 
     Lennard Jones 
     Coulomb’s law 
 
Continuum solvation: 
     Surface area 
     PB equation 

  
Conformational strain 
 
 
Statistical terms 
 
Steric 
complementarity 
 
Chemical 
complementarity: 
     Charge patterning 
     Hydrogen bonds 

 
Figure 5.  Proteins can be modeled at different levels of detail. 

Potential energy functions for evaluating protein conformations range from quantum mechanics, which is accurate but very slow, to more 

heuristic energy functions that include statistical terms.  In between are molecular mechanics potential energy functions, which are the most 

thoroughly tested models of molecular energetics.  Currently, the protein design field uses heuristic energy functions, but the trend is towards 

using more physically based potential energy functions. 
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Potential energy functions 

 

Overview 

 Molecular mechanics potential energy functions (MM-PEFs) incorporate two 

types of terms: “bonded” and “non-bonded” (Figure 6).  The bonded terms apply to 

sets of 2 to 4 atoms that are covalently linked, and they serve to constrain bond lengths 

and angles near their equilibrium values.  The bonded terms also include a torsional 

potential that models the periodic energy barriers encountered during bond rotation.  

The non-bonded terms consist of the Lennard-Jones function (which includes van der 

Waals attraction, and repulsion due to orbital overlap), and Coulomb’s law.  The 

parameters for the bonded and non-bonded terms of an MM-PEF are derived from 

quantum calculations, and from thermodynamic, crystallographic, and spectroscopic 

data on a wide range of systems.23,24  MM-PEF’s have been used predominately to 

simulate protein folding and dynamics, and are also used to refine X-ray crystal 

structures. 

 An alternative type of potential energy function is the knowledge-based, or 

statistical, energy function27,28 (Figure 7).  This type of energy function derives from 

the database of known protein structures.  The probabilities that residues appear in 

specific configurations (such as rotamer conformations, or buried vs. surface 

environments), or the probabilities that pairs of residues appear together in a defined 

relative geometry is calculated.  These probabilities are converted into an effective 

potential energy using the Boltzmann equation: ΔG = –RT ln(pobs/pexp), where pobs is 

the probability of seeing a particular structural element, and pexp is the expected 
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probability of seeing that structural element based on chance.29-31  The advantage of a 

knowledge-based energy function is that it can model any behavior seen in known 

protein crystal structures, even if no good physical understanding of the behavior 

exists.  The disadvantage is that these energy functions are phenomenological and 

can’t predict new behaviors absent from the training set. 

 Design potentials include a combination of MM-PEF, knowledge-based, and 

other terms.  In contrast to MM-PEFs, which have become fairly standardized, design 

potentials vary enormously between labs.  The various terms are typically calibrated 

and weighted to optimize performance for one type of prediction, such as experimental 

binding energy,12,32 or to produce native-like sequences when redesigning natural 

proteins.7  By way of illustration, we describe the potential energy functions used in 

two recent landmark protein design papers.  In the first example, Looger et al. 

redesigned various bacterial periplasmic binding proteins to bind trinitrotoluene, 

lactate, and serotonin.2  Their energy function included a Lennard-Jones term (using 

CHARMM22 parameters14) with the repulsive component scaled down to 35%, a 

Coulombic term with a distance-dependent dielectric constant of 8.0r and partial 

charges from CHARMM22, an explicit hydrogen bonding term derived from the 

DREIDING MM-PEF,33 a surface area-based solvation term, a knowledge-based 

rotamer term,34 and a term requiring all hydrogen bond donors and acceptors to be 

satisfied.  In a subsequent paper, Dwyer et al. designed de novo triosephosphate 

isomerase activity into ribose binding protein,3 using a more accurate electrostatics 

model that included multiple geometry-dependent dielectric constants.35  In the second 

example, Kuhlman et al. designed a 93-residue protein with a new α/β fold.7  Their 
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energy function included an LJ term (with radii fit to match the distribution of 

distances seen in the PDB, and well depths from CHARMM19), a Lazaridis-Karplus 

empirical solvation term,36 a knowledge-based hydrogen bonding term,37 a 

knowledge-based rotamer term, and a knowledge-based pairwise residue interaction 

term.  The scaling factors for each term were adjusted to optimize recovery of native 

sequences when redesigning a training set of 30 proteins. 

 Why are MM-PEFs and design PEFs so different, and why do the latter include 

so many ad hoc terms?  The basic answer is that design PEFs must compensate for an 

incomplete simulation of protein behavior: many degrees of freedom are either 

ignored, modeled implicitly, or sampled at low resolution.  We examine this question 

term-by-term in the following sections. 

 

 
 

Figure 6.  Molecular mechanics potential energy function with continuum solvent. 
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Figure 7.  Knowledge-based potential energy function. 
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Bonded terms 

 Although it is straightforward to directly use the bonded portion of MM-PEFs 

to determine the relative energies of different rotamer geometries, design potentials 

have tended to use fixed rotamer coordinates and knowledge-based rotamer potentials.  

MM-PEF bonded energies vary greatly with small changes in bond lengths and angles.  

Thus, these energies are not meaningful unless the structures have first been locally 

energy minimized (perhaps with dihedral angle restraints). 

 

Lennard-Jones 

 The Lennard-Jones (LJ) function includes a weakly attractive component at 

long distances (the van der Waals energy), and a strongly repulsive component at short 

distances.  The repulsive component is sensitive to small atomic displacements: the LJ 

energy of a protein crystal structure can decrease by hundreds of kcal/mol upon local 

energy minimization, despite imperceptible changes in the atomic coordinates. 

 The discrete rotamer sampling used for protein design calculations inevitably 

leads to small atomic overlaps, producing large unfavorable Lennard Jones energies.  

In many cases, the overlaps could be eliminated by local minimization, but such 

minimization cannot be readily incorporated into combinatorial sequence design 

algorithms.  Instead, the functional form of the LJ interaction is almost always 

softened so that overlaps are less energetically unfavorable.  For example, the LJ radii 

can be scaled down,38 the repulsive component of the LJ energy can be scaled down,2 

or the LJ function can be linearly extrapolated below a cutoff distance.7 
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 Softening the LJ function is based on a presumption that protein cores are 

reasonably fluid and thus can always rearrange to accommodate small overlaps.  

However, this modification always leads to qualitative and quantitative errors in 

interaction energies.  For example, modern MM-PEFs model hydrogen bonds as a 

combination of an electrostatic interaction and an LJ interaction.  When overlaps are 

allowed, atoms can approach more closely, producing artificially favorable hydrogen 

bond energies.  In general, changing the LJ parameters in any way will destroy the 

delicate balance engineered into an MM-PEF.  Use of unmodified LJ functions for 

protein design will require either very high resolution discrete sampling, or some form 

of continuous optimization. 

 

Solvation 

 Computing the energy of a protein embedded in explicit solvent molecules is 

time consuming, because the energy must be averaged over many solvent 

configurations.  To speed up calculations, solvent can instead be modeled as a smooth 

continuous material with a characteristic dielectric constant and surface tension.  The 

solvation energy of such protein continuum-solvent systems is generally separated into 

two components.  The first component is the hydrophobic effect, which accounts for 

the interfacial free energy of the uncharged protein and the continuum solvent.  The 

second component is the solvent polarization energy, which accounts for the 

interaction of partial charges in the protein with dipoles and ion clouds induced in the 

solvent.  Charged atoms closer to the protein’s surface have more favorable solvation 

energies and smaller apparent charge-charge interactions. 
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 Both the LJ function and Coulomb’s law are pairwise factorable, meaning that 

the total energy can be expressed as a sum of interactions between pairs of atoms 

without regard to the position of any other atom in the system.  This is important, 

because the total energy can then be determined by summing precalculated pairwise 

interaction energies (required for most rapid structural optimization procedures).  

Solvation energies, on the other hand, are not inherently pairwise factorable.  The 

interaction between two charges depends on the positions of other atoms, because the 

other atoms displace solvent and salt. 

 

Hydrophobic effect 

 The continuum hydrophobic effect has traditionally been modeled as being 

proportional to the solvent accessible surface area of a solute.39  Pairwise-factorable 

approximations of surface area have been developed for use in design calculations.40  

Although widely applied, the surface area-based model has clear limitations.  For 

example, hydrophobic solutes in water can interact favorably when they are separated 

by a single layer of water molecules.41  This type of interaction is completely absent 

from a surface-area based energy.  Wagoner and Baker have developed a model42 of 

the hydrophobic effect that captures such complex wetting phenomena, and produces 

energies that are closer to explicit solvent simulations than are surface-area based 

energies.  Their energy function includes a term proportional to surface area, a term 

proportional to volume, and a solute-solvent van der Waals term.  Adapting this 

improved model for protein design work will require either the development of a 
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pairwise-factorable approximation, or the use of a design algorithm that does not 

require precalculated energies. 

 

Solvent polarization 

 Solvent polarization is very difficult to simulate quickly and accurately.  

Consequently, many different empirical models that subsume polarization energies 

have been used in protein design efforts.34-36,43  These models commonly include a 

solvation energy for charged atoms based on accessible surface area, and a Coulomb’s 

law term with a distance-dependent dielectric constant.  The surface area models 

disregard the non-zero contributions of fully buried charges to the polarization energy.  

The distance-dependent dielectric constant scales down Coulomb’s law to account for 

screening of charge-charge interactions by water.  However, it ignores the fact that 

screening depends on the local environment of each charge. 

 A more physical approach is to solve the Poisson-Boltzmann (PB) differential 

equation44 that describes the relationship between fixed charge and the electric 

potential in a continuum dielectric environment.  Water is assigned a dielectric 

constant of 80, the protein interior is typically assigned a dielectric constant between 1 

and 20, and the molecular surface defines the boundary between protein and solvent.  

Values of the electric potential on a spatial grid can be obtained using a finite-

difference algorithm.  Marshall et al.45 describe a pairwise-factorable approximation to 

the PB equation based on summing precalculated energies for single residues and for 

pairs of residues.  However, this treatment does not take into account rotamer-
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conformation dependent changes in the protein-solvent boundary, or that solutions to 

the PB equation are not truly superimposable. 

 Alternatively, the generalized Born equation15 provides a fast approximate 

solution to the Poisson-Boltzmann equation, and it has been used for protein design.46  

Recent improvements to the generalized Born functional form47,48 yield solvation 

energies that are comparable to those derived from finite-difference calculations.49 

 

Explicit water 

 Continuum solvent models break down when water molecules are tightly 

bound to proteins.  However, it may be possible to incorporate a handful of explicit 

water molecules in a continuum solvent calculation.  Schymkowitz et al. developed a 

method for predicting positions of tightly bound water molecules in proteins.50  Jiang 

et al. show how to incorporate water molecules into amino acid rotamers.51 

 

Hydrogen bonds 

 In an MM-PEF, hydrogen bonds are typically modeled as dipole-dipole 

interactions.  The optimal geometry for a dipole-dipole interaction, for example 

between the C=O and N-H dipoles in the protein backbone, places all four atoms in a 

straight line.  However, the charge distribution around the carbonyl oxygen adopts a 

trigonal sp2 arrangement, which is not spherically symmetrical.  The sp2 lone-pair 

geometry should favor a bent hydrogen bond.  Morozov et al. showed that the bent 

geometry is indeed preferred according to quantum calculations and crystal structures 
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in the PDB.52  Using the PDB statistics, they developed a knowledge-based hydrogen 

bonding energy function37,53 and used it to design a new protein.7 

 

Solute polarization and quantum effects 

 A widely recognized limitation of MM-PEFs is that they assume fixed atomic 

charges, and do not model environment-dependent rearrangement of charge on a 

solute.  Recently developed polarizable force fields address this limitation by allowing 

the electric field to induce dipoles at each atom.54,55  Importantly, solute polarization 

breaks down the pairwise-factorability property of traditional MM-PEFs.  MM-PEFs 

also do not model chemical realities such as bond formation, partial covalent character 

of hydrogen bonds, and lone pairs.  One possible compromise is to model key parts of 

the protein using quantum mechanics, and the rest of the protein using molecular 

mechanics.56,57 

 

Reference states 

 Protein design potentials frequently use implicit reference states.  The MM-

PEF can only tell the energy difference between different conformations of the same 

sequence.  To compare different sequences, we must subtract the energy of each 

sequence in an alternative undesired conformation, such as the unfolded or unbound 

states.  These undesired conformations are typically treated implicitly by subtracting a 

fixed reference energy for each amino acid. 

 The unfolded and unbound states can also be modeled explicitly.  For example, 

the unfolded state can be modeled using fixed reference energies for each amino acid, 
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plus a random walk model of long range electrostatics.58  The unbound state can be 

modeled explicitly using the same structural optimization algorithm used on the bound 

state. 

 Modeling the correct reference states is critical to calculating the binding 

energy of a complex.  For example, the binding energy due to a salt bridge or 

hydrogen bond is the interaction energy of the charges in the bound conformation, 

relative to their interaction energies with water in the unbound conformation.  A 

typical salt bridge might have a Coulomb interaction energy of 50 kcal/mol, but this is 

almost completely canceled out by the charges interacting with water in the unbound 

state.  Thus, accurate calculations of the energies of both the bound and unbound 

structures are needed to calculate accurate binding energies.  In many cases, salt 

bridges are actually destabilizing relative to a hydrophobic interaction59: the charges 

would prefer to interact with water than with each other. 

 

Search algorithms 

 Three major algorithms have been used to search through sequence and 

conformational space in protein design.  Many variations and hybrid algorithms are 

possible, but here we describe a typically implementation of each algorithm, and 

briefly discuss the advantages and disadvantages of each. 

 The dead-end elimination (DEE) algorithm34,60 starts with a set of rotamers at 

each position in the protein, and a precalculated matrix of interaction energies between 

these rotamers.  The algorithm uses a series of filters to eliminate rotamers that 

provably can not be present in the global energy minimum.  Typically, a large fraction 
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of the rotamers can be eliminated, and the remaining rotamers are searched by 

exhaustive enumeration or Monte Carlo search.  The advantage of DEE is that very 

large sequence and structural spaces can be searched comprehensively.  Sequence and 

structural space are typically searched simultaneously, which requires the use of an 

implicit reference state.  In other words, undesired conformations such as the unfolded 

or unbound states are typically not modeled explicitly, but rather are treated using 

fixed reference energies for each amino acid.  Thus, for example, dead end elimination 

does not distinguish between intramolecular and intermolecular interactions, and will 

propose mutations that stabilize the protein without improving its interaction with the 

ligand.61  Reference states could be included if DEE were only used for structural 

optimization of single sequences, with another procedure used for sequence 

optimization.  This is typically not done because it is much faster to optimize sequence 

and structure simultaneously. 

 The mean field algorithm19,62 also uses a rotamer-based picture with 

precomputed energy matrices.  However, rather than finding a single low energy 

structure, mean field treats the protein as a probabilistic ensemble.  Each rotamer is 

assigned a probability, and these probabilities are updated iteratively to match the 

Boltzmann distribution.  The final probabilities can be used to calculate the protein’s 

conformational entropy.  The mean field algorithm is typically used to optimize the 

structure of a single sequence, and the sequence optimization is typically done using a 

genetic algorithm.  The advantage of this approach is that undesired conformations 

such as the bound, unbound, and unfolded states can be modeled explicitly.  The use 
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of multiple states allows for stability, affinity, and specificity to be explicitly 

calculated and optimized. 

 Monte Carlo methods63-65 typically start with a single protein structure, and use 

a set of moves to perturb this structure.  If the new structure has a lower energy, then it 

is accepted.  If the new structure has higher energy, then it is accepted with probability 

/E RTe−Δ , where ΔE is the energy change, and T is the temperature, which is slowly 

annealed to 0.  The advantage of this approach is that there is no need to precompute 

large energy matrices.  Thus, it is CPU-intensive rather than memory-intensive, which 

better matches today’s distributed computing systems.  Furthermore, the energy 

function can include non-pairwise additive terms such as polarization.  The Monte 

Carlo moves can include randomly switching from one rotamer conformation to 

another, but they can also include non-rotameric moves. 

 The Baker lab has developed a clever strategy for including backbone 

flexibility in protein design7,66.  They alternate between sequence design on a fixed 

backbone, and structural optimization for a designed sequence. 

 

 

Conclusions and future directions 

 The techniques described above have been used to design proteins with a wide 

variety of new functions.  Clark et al.60 optimized the recombining site of an antibody 

to increase the ligand affinity, and Lazar et al.10 optimized the Fc region of an 

antibody to bind more tightly to the Fc receptor.  Ashworth et al.64 redesigned an 

endonuclease to recognize and cut a heterologous DNA sequence.  Kuhlman et al.65 
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designed a protein that reversibly switches between two distinct protein folds with a 

change in pH or cobalt concentration. 

 These examples illustrate the diverse range of useful functions already 

accessible by protein design.  As potential energy functions, search algorithms, and 

computational power continue to improve, protein design should become a standard 

and general research tool. 
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Summary 

While the molecular-mechanics field has standardized on a few potential energy 

functions, computational protein design efforts are based on potentials that are unique 

to individual labs.  Here we show that a standard molecular-mechanics potential 

energy function without any modifications can be used to engineer protein-ligand 

binding.  A molecular-mechanics potential is used to reconstruct the coordinates of 

various binding sites with an average root mean square error of 0.61 Å, and to 

reproduce known ligand-induced side-chain conformational shifts.  Within a series of 

34 mutants, the calculation can always distinguish weak (Kd > 1 mM) and tight (Kd < 

10 μM) binding sequences.  Starting from partial coordinates of the ribose binding 

protein lacking the ligand and the ten primary contact residues, the molecular-

mechanics potential is used to redesign a ribose binding site.  Out of a search space of 

2×1012 sequences, the calculation selects a point mutant of the native protein as the top 

solution (experimental Kd = 17 μM), and the native protein as the second best solution 

(experimental Kd = 210 nM).  The quality of the predictions depends on the accuracy 
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of the generalized Born electrostatics model, treatment of protonation equilibria, high 

resolution rotamer sampling, a final local energy minimization step, and explicit 

modeling of the bound, unbound, and unfolded states.  The application of unmodified 

molecular-mechanics potentials to protein design links two fields in a mutually 

beneficial way.  Design provides a new avenue to test molecular-mechanics energy 

functions, and future improvements in these energy functions will presumably lead to 

more accurate design results. 

 

 

Introduction 

 Computer-aided design of a ligand binding site is similar to solving a 3D 

jigsaw puzzle: it involves fitting together the right pieces (amino acid mutations) to 

create a properly shaped and functionalized pocket for a ligand.  The inputs to the 

design procedure are the crystal structure of a scaffold protein, a ligand structure, and 

a set of amino-acid positions that will be mutated to create the binding site.  The 

orientations of candidate jigsaw-puzzle pieces are determined by modeling the 

conformations that the ligand and surrounding amino acids can adopt, so as to identify 

the lowest energy arrangement.  The design procedure searches through thousands of 

candidate sequences for one that optimizes the computed binding free energy of the 

ligand with the protein. The whole process depends heavily on the potential energy 

function (PEF), a mathematical expression embodying the physical laws that govern 

the protein-ligand and solvent system. 
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 Over the past 30 years, potential energy functions have played a central role in 

the molecular-mechanics field.  This field has converged on a small set of standard 

PEF’s that have been extensively tested.67  Identifying and correcting the limitations of 

these energy models is an area of active research.54,55,68  The modern molecular-

mechanics potential energy functions (MM-PEF’s) treat proteins as a collection of 

atoms with partial charges and van der Waals parameters, connected by springs that 

maintain bond lengths and angles.  The parameters are derived from quantum 

calculations and from experimental data on a wide range of systems.23  MM-PEF’s 

have been used to calculate binding constants69-73, protein folding kinetics74, 

protonation equilibria75, and active site coordinates71,76,77. 

 Perhaps surprisingly, standard MM-PEF’s are not used for protein design.78  

The reason is that computing energies using MM-PEF’s requires significant computer 

time and is very sensitive to detailed atom positions, necessitating fine conformational 

sampling.  When thousands of different sequences must be evaluated, the computation 

time per sequence becomes critical.  In order to accelerate calculations, design 

algorithms typically use simplified PEFs with various ad hoc energy terms2,3,7-

12,60,64,65,76,79,80 (heuristic potential energy functions are also often used to predict 

binding constants81,82 and to predict active site coordinates83).  Water is treated in a 

simplified way, for example by inserting a distance dependent dielectric constant into 

Coulomb’s law, and by applying a surface-area based solvation energy.2,3  The van der 

Waals interaction is frequently smoothed so that it is less sensitive to spatial position, 

and thus can be optimized with coarse sampling.2,3,7  Rather than explicitly modeling 

reference states, such as the unfolded state, the reference states are typically treated 
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implicitly by modifying the PEF.2,3,7  Statistical terms derived by counting how 

frequently different residues and functional groups interact in crystal structures, are 

included as well.2,3,7  Relative weights for the various energy terms are adjusted 

empirically so as to match experimental data.7,12  Similar approximations were used in 

the early days of molecular-mechanics calculations, but were replaced as better 

models and increased computational power became available. 

 There are several motivations for trying to identify a single, standardized 

energy function that is practically useful for protein design.  First, design results from 

different labs could be compared, and those results would collectively address where 

the energy model had failed and how to improve it.  Second, the practice of 

computational protein design would be simplified if PEF development were not 

required.  Finally, a PEF that had been broadly validated might be expected to 

generalize better to new design problems than would a customized PEF. 

 One reasonable choice for a universal energy function would be an MM-PEF.  

MM-PEF’s are the most broadly tested PEF’s,67 and a direct correspondence exists 

between them and more rigorous quantum-mechanical treatments of matter.23  A large 

group of scientists work on MM-PEF’s, and the advances they make would be directly 

applicable to design.  Here, we test whether protein-ligand binding sites can be 

successfully designed based on a standard MM-PEF that does not include any 

heuristic corrections.  We first describe how we directly apply an MM-PEF to the 

protein design problem, and then detail various tests applied to the ribose binding 

protein. 
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Results 

 

Design scheme 

 Using the genetic algorithm,20 we search through thousands of sequences to 

find one sequence that maximizes the calculated protein-ligand dissociation energy 

without destabilizing the protein by more than 5 kcal/mol.  To evaluate dissociation 

and unfolding energies, the bound, unbound, and unfolded states are modeled, and 

their calculated energies are differenced.  For each state, we use a mean field rotamer-

repacking algorithm to find the atomic coordinates that minimize the energy.  As part 

of the rotamer repacking, titratable residues are allowed to protonate or deprotonate 

depending on the local energetics. Good structural sampling is achieved by using 

extremely large rotamer libraries (≥ 5449 rotamers per position), and several thousand 

ligand poses that sample the translational, rotational, and internal degrees of freedom 

of the ligand.  The optimal structure generated by rotamer repacking is then subjected 

to gradient-based energy minimization.  The energies of each state are evaluated with 

the unmodified CHARMM22  molecular-mechanics potential energy function14 and 

the generalized Born solvation formalism15 developed by Lee et al.16  The design 

procedure is outlined in Figure 8.  To evaluate the approach, we apply three tests: 

structural prediction, energetic prediction, and prediction of a binding site sequence. 
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Figure 8.  Simplified schematic of the protein design algorithm. 

(a) Setting up a design calculation.  The design calculation is based on a scaffold protein (gray) with a known crystal structure, and a set of 

design positions (red).  Possible ligand poses (green) and side chain conformations (blue) for each amino acid at each position are 

constructed.  The right panel shows multiple side chain rotamers modeled at one design position, and two alternative ligand poses.  Interaction 
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energies between the possible ligand poses and the possible side chain conformations are precomputed.  (b) Running a design calculation.  

The design procedure involves separate sequence optimization (to find sequences that bind ribose) and structural optimization (to determine 

the binding constant and stability of each sequence).  In the RBP-ribose redesign, we search a space of 2×1012 sequences and an average of 

5×1028 conformations per sequence. 
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Structural prediction 

 For structural predictions, we started with crystal structures and discarded the 

coordinates of the ligand and all contacting side chains.  These coordinates were then 

predicted in the context of the rest of the protein.  We first explored the effect of 

sampling resolution by predicting the structure of ribose binding protein (RBP) bound 

to ribose using four rotamer libraries of increasing size (Figure 9).  With fewer than 

5449 rotamers per position, the calculated energy of the predicted structure is less 

favorable than the calculated energy of the crystal structure, indicating that the crystal 

structure conformation is missed due to inadequate sampling resolution.  At 5449 

rotamers per position, the predicted structure has the same energy as the energy-

minimized crystal structure, and the coordinates differ by a root mean square (RMS) 

error of 0.148 Å.  This level of accuracy exceeds the experimental error in the 

crystallographic coordinates.  This apparently surprising result likely occurs because 

the fixed portion of the crystallographic coordinates constrains the possible solutions 

at the modeled positions.  However, this constraint alone is not sufficient to specify 

the binding site sequence and geometry (see below). 
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Figure 9.  Higher rotamer resolution improves structural predictions for the RBP binding site 

(PDB code: 2DRI). 

Δ Energy is the difference in potential energy between the calculated structure and the crystal 

structure, after both have been subjected to local energy minimization.  RMS error is the root-

mean-square deviation between the calculated and crystallographic coordinates of the 

repacked atoms, comprising the ligand and ten active site side chains.  The phenylalanine 

rotamers from each rotamer library are shown to illustrate the sampling resolution.  The lowest 

resolution rotamer library shown is the Richardson penultimate rotamer library17 with 

protonation states added for His, Asp, and Glu.  The other rotamer libraries were derived by 

clustering side chain conformations in high resolution crystal structures from the Protein Data 

Bank (see p. 75). 

 

 Using high resolution rotamer libraries (either 5449 or 6028 rotamers per 

position), side chains in the binding sites of 5 different structures were predicted with 

an average RMS error of 0.61 Å (Figure 10 & Figure 11).  The number of predicted 

residues ranged from 9 to 23.  The error was generally larger for surface residues, and 

when more positions were predicted. 

 For the RBP-ribose calculations, we restricted the ligand poses to be within 1.8 

Å RMS of the native pose, resulting in the 4639 poses shown in Figure 10.  For the 
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ABP-arabinose calculations, the ligand poses were restricted to be within 1.0 Å RMS 

of the native pose, resulting in the 4111 poses shown in Figure 10.  Although we 

would have preferred to do the calculations without this filter, it was necessary to 

reduce the number of ligand poses to a manageable number (the precalculated 

interaction energy matrices had to be smaller than 2 GB to fit into memory). 

 We explicitly model the bound and unbound states, providing predictions of 

side-chain conformational shifts upon binding.  The predicted changes match the 

crystal structures in 70% of the residues with the largest conformational shifts (Figure 

12).  Single-state design algorithms ignore such conformational shifts, in contrast to a 

multi-state design framework.9  Note that we did not predict the backbone shift upon 

binding (4.1 Å RMS for RBP and 0.8 Å RMS for VEGF) because the bound and 

unbound backbone coordinates were used as inputs to the calculation. 

 The calculation predicts that one aspartic acid and one glutamic acid in the 

binding site of ABP are protonated (Table 1).  If these residues are not allowed to 

protonate, the structural prediction is degraded (Figure 13). 
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 Ligand poses Side chain rotamers 
crystal structure / 

predicted structure RMS error 

ABP-arabinose 

 

 

0.677 Å 

RBP-ribose 

 

 

0.148 Å 

 
Figure 10.  Prediction of binding site coordinates. 

Starting from crystal structures stripped of the ligand and the contacting residues, the active site was reconstructed by finding the lowest 

energy arrangement of the ligand and side chains.  For ABP-arabinose (PBD code: 6ABP), the coordinates of the arabinose and 15 contacting 

residues (10, 14, 16, 17, 64, 89, 90, 108, 145, 147, 151, 204, 205, 232, 259) were predicted using 6028 rotamers per position and 4111 ligand 

poses.  For RBP-ribose (PDB code: 2DRI), the coordinates of ribose and 10 contacting residues (13, 15, 16, 89, 90, 141, 164, 190, 215, 235) 

were predicted using 5449 rotamers per position, and 4639 ligand poses. 
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bevacizumab-VEGF 
RMS error: 0.621 Å 

VEGF (unbound) 
RMS error: 1.11 Å 

RBP (unbound) 
RMS error: 0.483 Å 

 
Crystal structure / Predicted structure 

 
Figure 11.  Prediction of binding site coordinates for bevacizumab-VEGF (1BJ1), unbound VEGF (2VPF), and unbound RBP (1URP). 

For bevacizumab-VEGF, the following 23 residues were repacked, using 6028 rotamers per position: V17, V21, W48, W79, W81, W82, W83, 

W91, W93, H28, H30, H31, H32, H54, H55, H99, H101, H102, H103, H105, H106, H107, H108.  V and W are VEGF chains, H and L are 

antibody heavy and light chains.  For unbound VEGF and RBP, the same set of residues were predicted as the bound structure. 
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RBP 

90 Arg* 
RBP 

235 Gln* 
RBP 

13 Asn 
RBP 

89 Asp* 
RBP 

215 Asp* 

  
 

 
VEGF, chain B 

48 Lys* 
VEGF, chain B 

91 Ile* 
VEGF, chain B 

82 Arg 
VEGF, chain B 

81 Met 
VEGF, chain A 

21 Tyr* 

 

 

 

 

 
Unbound crystal structure Unbound predicted structure 

Bound crystal structure Bound predicted structure 
 
Figure 12.  Prediction of side chain conformational shifts in RBP upon binding ribose, or VEGF upon binding bevacizumab. 

The five largest experimentally observed conformational shifts are shown for each protein.  The residues were superimposed by aligning the 

backbone amide nitrogen, alpha carbon, and carbonyl carbon.  * denotes correct predictions, where the unbound/bound predictions are closest 

to the unbound/bound crystallographic coordinates, respectively. 
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ABP-arabinose (6ABP) 
 Protonation state 
Residue bound unbound 
14 GUP GUP 
89 APP APP 
90 ASP ASP 
259 HSD HSD 

 
RBP-ribose (2DRI, 1URP) 
 Protonation state 
Residue bound unbound 
89 ASP ASP 
215 ASP ASP  

bevacizumab-VEGF (1BJ1, 2VPF) 
 Protonation state 
Residue bound unbound 
W93 GLU GLU 
H101 HSD HSD 
H107 HSD HSD 

 
 
 
 
 

 
Table 1.  Predicted protonation states. 

 

 
89 Asp 

 
crystal structure (6ABP) 
minimized crystal structure with 14 Glu and 89 Asp 
minimized crystal structure with 14 Gup and 89 App 

 
Figure 13.  In ABP-arabinose, 14 Glu and 89 Asp must be protonated to maintain the crystal 

structure coordinates under local minimization.  If they are deprotonated, then the coordinates 

for 89 Asp shift out of position. 

 

Energetic prediction 

 To test if the energy function can properly rank the binding affinities of 

different binding site sequences, we first computed ligand binding energies for the 

native ABP and RBP sequences and for 1000 scrambled sequences.  As expected, 

none of the scrambled sequences have better predicted stability and dissociation 

energy than the native (Figure 14a). 

 Next, we calculated the relative binding energies of 34 mutants of ABP for 

which dissociation energies have been measured.  Two sequences were predicted to 

destabilize the protein by more than 10 kcal/mol relative to native ABP, and 
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presumably adopt alternative backbone conformations.  The binding energies of the 

remaining sequences are predicted with a correlation coefficient of r2=0.57 (Figure 

14b, Table 2).  The predictions were performed without any adjustable parameters.  As 

each calculation required about 1 minute of CPU time on a Pentium processor, the 

approach is fast enough for design applications.  The data set includes single, double, 

and triple point mutants of wild type ABP, and covers a wide range of mutation types 

(hydrophobic to hydrophobic, hydrophobic to polar/charged, polar/charged to 

hydrophobic, and polar/charged to polar/charged). 

 Within the data set, the calculation can always distinguish weak (Kd > 1 mM) 

and tight (Kd < 10 μM) binding sequences.  However, the absolute dissociation 

energies are not predicted correctly.  One important possible source of error is that 

there is no published crystal structure of unbound ABP.  We model the unbound 

protein backbone conformation based on the crystal structure of bound ABP.  In 

reality, the unbound protein likely exists in an open conformation with better solvated 

binding-site residues.84  Our incorrect unbound state might explain the 21.2 kcal/mol 

offset in calculated dissociation energies.  The slope of the regression line is greater 

than one, which is likely due to modes of structural relaxation (such as backbone 

motions) that were not modeled.  The resulting clashes will exaggerate any energy 

differences between sequences.  Another possibility is that we are not adequately 

modeling entropy losses upon binding.85 
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Figure 14.  Predicting dissociation energies. 

(a)  Calculated stability and dissociation energy distinguish the native sequence (×) from 1000 scrambled sequences (♦) for ABP and RBP.  

Sequences predicted to be more then 10 kcal/mol destabilized relative to the native are shown in gray.  (b)  Predicting relative dissociation 

energies of mutants.  The graph shows data on mutants of ABP binding to arabinose.  Experimental data are from reference 86 and from 

measurements reported in Table 2.  An experimental dissociation energy of zero means that there was no detectable binding.  Calculations 

were performed using 6ABP as the scaffold structure for both the bound and unbound states, with 6028 rotamers per position.  Coordinates of 

the fifteen primary ligand contacts and of residues 20 and 235 were optimized.  The circled points are predicted to be destabilized by more than 

10 kcal/mol relative to the native. 
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Experimental Calculated Sequence 
Dissoc. energy 

(kcal/mol) Source 
Dissoc. energy 

(kcal/mol) 
Stability vs. native 

(kcal/mol) 10 14 16 17 20 64 89 90 108 145 147 151 204 205 232 235 259 
9.40 2 40.98 0.00 LYS GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
9.15 3 36.45 1.64 LYS GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
8.53 2 44.22 -6.62 LYS GLU TRP PHE GLU CYS ASP ASP LEU LEU THR ARG MET ASN ASN ASP HIS 
7.81 3 34.47 -0.16 LYS GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
6.47 3 38.16 0.36 LYS GLU TRP PHE GLU CYS ASP ASP MET VAL THR ARG MET ASN ASN ASP HIS 
6.47 3 33.07 -5.50 LYS GLU TRP PHE GLU CYS ASP ASP MET VAL ALA ARG MET ASN ASN ASP HIS 
6.47 3 30.43 1.54 LYS GLU TRP PHE GLU CYS ASP ASP MET ALA SER ARG MET ASN ASN ASP HIS 
5.18 1 18.80 -17.56 LYS GLU TRP TRP GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
5.13 3 37.01 1.16 ASN GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
5.13 3 29.75 0.66 ASN GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
5.13 3 29.63 -0.38 VAL GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
5.13 3 27.86 -1.87 LYS GLU TRP PHE GLU CYS ASP ASP MET ALA ALA ARG MET ASN ASN ASP HIS 
5.13 3 26.59 1.08 VAL GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
5.13 3 25.67 0.76 ASN GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
5.13 3 25.50 3.85 GLN GLU TRP PHE GLU CYS ASP ASP MET LEU SER ARG MET ASN ASN ASP HIS 
5.13 3 25.07 3.44 GLN GLU TRP PHE GLU CYS ASP ASP MET VAL SER ARG MET ASN ASN ASP HIS 
5.07 1 17.00 -10.95 LYS ILE TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
3.83 3 23.77 5.02 LYS GLU TRP PHE GLU CYS ASP ALA MET LEU SER ARG MET ASN ASN ASP HIS 
3.79 3 35.24 1.19 VAL GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
3.79 3 33.08 -1.52 LYS GLU TRP PHE GLU CYS ASP ASP MET ASP ALA ARG MET ASN ASN ASP HIS 
3.79 3 32.72 2.31 LYS GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
3.79 3 26.34 7.93 LYS GLU TRP PHE GLU CYS ASP ASP MET ASP SER ARG MET ASN ASN ASP HIS 
3.79 3 25.60 6.73 GLN GLU TRP PHE GLU CYS ASP ASP MET LEU THR ARG MET ASN ASN ASP HIS 
3.79 3 20.21 -2.70 LYS GLU TRP PHE GLU CYS ASP ALA MET ASP SER ARG MET ASN ASN ASP HIS 
3.79 3 19.29 11.30 ASN GLU TRP PHE GLU CYS ASP ALA MET LEU SER ARG MET ASN ASN ASP HIS 

< 3.22 3 28.95 8.43 LYS GLU TRP PHE GLU CYS ASP ALA MET VAL THR ARG MET ASN ASN ASP HIS 
< 3.22 3 24.88 1.13 LYS GLU TRP PHE GLU CYS ASP ALA MET VAL ALA ARG MET ASN ASN ASP HIS 
< 3.22 3 23.83 7.24 VAL GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
< 3.22 3 23.04 12.50 GLN GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
< 3.22 3 22.29 7.09 VAL GLU TRP PHE GLU CYS ASP ALA MET LEU SER ARG MET ASN ASN ASP HIS 
< 3.22 3 22.00 11.12 ASN GLU TRP PHE GLU CYS ASP ALA MET LEU THR ARG MET ASN ASN ASP HIS 
< 3.22 3 19.86 6.98 LYS GLU TRP PHE GLU CYS ASP ALA MET ALA ALA ARG MET ASN ASN ASP HIS 
< 3.22 3 19.58 10.52 LYS GLU TRP PHE GLU CYS ASP ALA MET ALA SER ARG MET ASN ASN ASP HIS 
< 3.22 3 15.93 12.81 LYS GLU TRP PHE GLU CYS ASP ALA MET VAL SER ARG MET ASN ASN ASP HIS 

 



Chapter 3: Physics-based design of protein-ligand binding 

 47

Table 2.  Predicted and calculated arabinose dissociation energy of ABP mutants. 

Top line shows the native sequence, and mutations are bolded.  Data sources: 1. present work; 2. reference 87; 3. reference 86. 

 

 



Chapter 3: Physics-based design of protein-ligand binding 

 48

 

Binding site design 

 The final and most stringent test of the molecular mechanics energy model was 

a redesign of the binding site in RBP (Figure 15).  We discarded the ligand 

coordinates, and the sequence and coordinates of the 10 residues contacting the ligand.  

The total size of the sequence space searched was 1710 = 2.0 × 1012 (Gly, Pro, and Cys 

were not allowed).  The calculation was initiated from a population of random 

sequences.  After evaluation of 8888 sequences, the energy function identified a point 

mutant (N13L) of native RBP as the tightest binding sequence.  After 8964 sequences, 

it picked native RBP as the second tightest binding sequence.  Evaluation of an 

additional 8879 sequences did not yield any further improvement.  The entire process 

was repeated with a different random initial sequence population, and the same 

optimal sequences were selected. During the course of the design, first stability was 

achieved, then hydrogen bonding, and finally shape complementarity.  The same 

pattern has been seen experimentally in the affinity maturation of antibodies against 

lysozyme.88 

 We experimentally tested the three top sequences from four different RBP-

ribose redesign calculations to determine which aspects of the design algorithm were 

essential (Table 3).  Decreasing the rotamer resolution (row a), omitting the final 

continuous minimization step (row b), or using a less accurate electrostatics model 

(row c) produces sequences that bind very weakly.  Only when we use a high 

resolution rotamer library, a final continuous minimization step, and accurate 

electrostatics, does the design algorithm predict sequences that bind well (row d). 
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 Prior to adding the stability requirement to the design calculation, all of our 

designed proteins expressed at very low concentrations in E. coli, probably because of 

proteolysis.  After adding the stability requirement, the calculation predicts the top 

redesigned sequence (N13L point mutant) to be 1.5 kcal/mol more stable than the 

native RBP.  Experimentally, this sequence is 1.2 kcal/mol more stable than the native 

(3.7 vs 2.5 kcal/mol, measured from urea denaturation curves89).  We have not 

measured unfolding free energies for the remaining proteins. 
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Figure 15.  Redesigning the ribose binding site in RBP. 

Positions identical to the native are highlighted in yellow.  The figure shows the best sequence as a function of the number of sequences 

considered, using either the mean field dissociation energy as the criterion (blue trajectories) or alternatively the dissociation energy calculated 

using minimized structures (red trajectories).  All sequences with a mean field dissociation energy greater than 30 kcal/mol (corresponding to -

2709 QFLMRQFNAQ 
2764 RALDLRFNSQ 
4384 RYEDRRFNAV 
4640 RYLDARFNAQ 
4663 MILDRRFNSQ 
5030 MYLDRRFNSQ 
5474 LFLDRRFNSQ 
5727 QYFDRRFNSQ 
5916 MYMDRRYNSQ 
5928 QYFDRRYNSQ 
6461 QFFDRRFNSQ 
6496 SYFDRRYNSQ 
6559 NYFDRRYNSQ 
7071 SFMDRRFNDQ 
7199 LFFDRRYNSQ 
8618 SFFDRRFNDQ 
8782 NFFDRRFNSQ 
8871 NFFDRRFSSQ 
8888 LFFDRRFNDQ 

native 
(8964) 

NFFDRRFNDQ 

Seq. # Best 
sequence 

Protein-ligand 
hydrogen bonds

Shape 
complementarity

Dissociation 
energy 

Unfolding 
energy 

5 6 7 8 9 10 11 12 0.78 0.88 -35 -10 15 -5 0 5 10
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7.5 kcal/mol relative to the native sequence, dashed line) were locally energy minimized to generate the red trajectory.  Sequence 8871 is the 

top sequence when ranked by mean field dissociation energy (corresponding to Table 3b), and sequence 8888 is the top sequence when 

ranked by minimized dissociation energy (corresponding to Table 3d).  The native sequence was found out of a possible 2×1012 sequences 

after 8964 sequence evaluations.  Dissociation and unfolding energies are reported in kcal/mol, relative to the native sequence.  The number of 

protein-ligand hydrogen bonds was determined using bndlst.90  Shape complementarity (which ranges from 0 for perfectly non-complementary 

surfaces to 1 for perfectly complementary surfaces) was calculated using sc.91  Backbone coordinates for the bound state are from 2DRI, and 

backbone coordinates for the unbound state are from 1URP. 
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Design 
calc. 

Rotamers 
per 
position 

Local 
minimization

Solvent 
treatment 

 Rank # of residues 
identical to 
native 

Kd (experimental) Sequence (10 
primary contacts)

    1 3 210 ± 80 mM* NIMLMMFNAN 

(a) 2800 yes Lee 2 4 8.8 ± 0.4 mM* NFMLNMFNAN 

    3 4 83 ± 32 mM* NFMLMMFNAN 

    1 8 12 ± 0.9 mM* NFFDRRFSSQ 

(b) 5449 no Lee 2 9 48 ± 13 mM* NFFDRRFNSQ 

    3 8 84 ± 10 mM* NMFDRRFNSQ 

    1 6 99 ± 2 mM* NYYDRRYNAQ 

(c) 5449 yes Qiu 2 6 84 ± 2 mM* NYMDRRYNSQ 

    3 7 13 ± 1 mM* NYFDRRYNAQ 

    1 9 19 ± 8 μM† LFFDRRFNDQ 

(d) 5449 yes Lee 2 10 0.30 ± 0.07 μM† NFFDRRFNDQ 

    3 9 80 ± 2 μM† NTFDRRFNDQ 

Native      10 0.30 ± 0.07 μM† NFFDRRFNDQ 

 
Table 3.  High resolution rotamer library, gradient-based local minimization, and an accurate solvation model are required to successfully 

redesign the ribose binding site in RBP. 

Multiple design calculations (a–d) were performed using different sampling resolutions and solvent models.  The top three sequences from 

each calculation and their experimentally measured binding constants are shown.  Parts of the sequence identical to the native sequence are 

highlighted in yellow.  (a) Design calculation using a lower resolution rotamer library.  (b) Design calculation without a gradient-based local 

minimization step.  (c) Design calculation using a less accurate generalized Born solvent treatment.92  (d) Design calculation using a high 

resolution rotamer library, gradient-based local minimization, and an accurate generalized Born solvation model.16   Sequences are ranked by 

calculated dissociation energy, allowing 5 kcal/mol destabilization relative to the native sequence for 5449 rotamers / position, and 20 kcal/mol 

destabilization for 2800 rotamers / position.  The native sequence was not within the top 100 sequences for design calculations A, B, or C.  * Kd 

measured using the solid phase radioligand binding assay.  † Kd measured using the centrifugal concentrator assay.  The reported error is the 

standard deviation of 3 measurements. 
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Discussion 

 This paper reports the first successful redesign of an entire binding site based 

on an unmodified molecular-mechanics potential energy function.  This is a stringent 

test of the energy function, because the native sequence and a point mutant are 

distinguished from 2.0 × 1012 alternative sequences.  Good hydrogen bonds and steric 

complementarity were picked out directly by the energy function, without energy 

terms or selection criteria that specifically required these features.  Given that the 

underlying physics is the same for the design of new proteins and for the simulation of 

known proteins, it is satisfying to see that the same energy models can be used as well. 

 We tested a number of simplifications commonly used in protein design 

calculations, and found that they all resulted in less successful predictions.  For 

example, low sampling resolution or an inaccurate solvation model led to sequences 

that lacked critical hydrogen bonds.  Scaling down the electrostatic energy (which is 

frequently done to compensate for a crude electrostatics model) reduced the accuracy 

of the energetic predictions.  Eliminating the unfolded state resulted in unstable 

designed proteins.  Softening the van der Waals interaction allowed atoms to pack 

together more closely, making hydrogen bonds and salt bridges appear artificially 

strong (Figure 28), and resulting in the burial of charged and polar functional groups 

(Table 10). 

 An important conclusion from this work is that MM-PEF’s must be paired with 

an accurate continuum solvent model and with protonation equilibria in order to 

correctly redesign a polar binding site.  Individual polar protein-ligand interactions can 
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exhibit energies up to 100 kcal/mol (the Coulomb energy between unit charges 

separated by 3.3 Å).  These energies are almost exactly counterbalanced by 

interactions with water in the unbound protein.  Thus, small errors in the solvation 

energy grossly alter the design predictions.  Finite difference algorithms are generally 

considered the most accurate methods to solve the Poisson-Boltzmann differential 

equation that defines the continuum solvent model, but they are currently too slow for 

protein design.  Very accurate generalized Born approaches have been developed over 

the last few years,16 and produce solvation energies that differ from the finite 

difference result by only 2% (Figure 20).  We have shown that this level of accuracy is 

both necessary and sufficient for protein design calculations. 

 The results in this paper suggest that the protein design and molecular-

mechanics fields can work together on the same potential energy functions, and that 

future developments in MM-PEFs will be immediately applicable to protein design 

(although ad hoc terms may still be necessary for modeling aggregated and misfolded 

states).  Currently, there are active efforts to develop polarizable potential energy 

functions that more accurately reproduce the physical characteristics of small 

molecules,54,55,68 and hybrid quantum mechanical / molecular mechanical potential 

energy functions that model charge transfer and changes in covalent bonding.93,94  It 

will be exciting to see how these improved energy models will impact the protein 

design problem. 
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Materials and methods 

 

Calculations 

 Protein structures were predicted using a rotamer-based mean field 

algorithm.19  The energy was calculated as the sum of the CHARMM22 molecular-

mechanics energy,14 a generalized Born surface-area solvation energy15,16 using a 

microscopic surface tension95 of 0.0072 kcal/mol/Å2, and a deprotonation energy.96  

The most probable mean field structure was then locally minimized using the L-BFGS 

optimization algorithm97 in TINKER98 to obtain a final structure and energy.  The 

unfolded protein energy was calculated by assuming that the protein backbone adopts 

an ensemble of random walk conformations in water (see ref. 58,99 and p. 81).  The 

stability of the protein was calculated as the energy difference between the unfolded 

protein and the folded unbound protein, and the dissociation energy was calculated as 

the energy difference between the uncomplexed and the complexed protein-ligand 

system.  All calculations were performed at 25°C, pH 7.0, 100 mM monovalent salt.  

Ribose binding proteins were designed using a genetic algorithm20 that optimized the 

calculated ribose dissociation energy, given a 5 kcal/mol limit on protein 

destabilization.  The genetic algorithm was initialized with a population of random 

sequences. Calculations were performed using CNSsolve100, TINKER98, and custom 

code written in C++, and run on a Pentium-based Linux cluster. 
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Protein purification and constructs 

RBP without a periplasmic signal peptide was cloned into the NcoI/XhoI sites of 

pET28a (EMD Biosciences), generating a derivative with a C-terminal His6 tag.  

Mutants were made by Kunkel mutagenesis101 or by QuikChange (Stratagene).  

Protein was expressed in BL21 DE3 E. coli cells (Novagen) with 1 mM IPTG for 5 hr 

at 37°C.  Cells were lysed with lysozyme and sonication in the presence of 1 mM 

phenylmethylsulfonyl fluoride.  Protein was purified by immobilized metal affinity 

chromatography, followed by gel filtration chromatography in 20 mM potassium 

phosphate pH 7.0, 100 mM NaCl.  The purified protein was then concentrated, and its 

final concentration determined by absorbance.102 

 

Centrifugal concentrator radioligand binding assay 

Proteins were diluted into 1 ml of 20 mM potassium phosphate pH 7.0, 100 mM NaCl, 

and 0.5 μCi 1-3H(N)-D-ribose (Moravek).  After equilibration for 30 minutes, the 

samples were placed in centrifugal concentrators (Amicon Ultra, 5 kDa MWCO), and 

centrifuged until at least 500 μl of filtrate had crossed the membrane.  Any filtrate in 

excess of 500 μl was returned to the retentate, and the quantity of radioligand in the 

filtrate and retentate were measured by scintillation counting.  Dissociation constants 

were calculated as 2 2
1 1d

P LK
r r

= −
− +

, where r is the ratio of retentate to filtrate 

radioligand, P is the initial protein concentration, and L is the initial radioligand 

concentration.  We chose conditions where P > Kd and r fell between 1.2 and 20.  The 

analysis depends on the assumption that water and the ligand cross the membrane at 
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equal rates.  This assumption was tested by centrifuging a ribose solution across the 

membrane in the absence of protein; the specific activities of the retentate and filtrate 

were identical to within 4%. 

 

Solid phase radioligand binding assay 

A solid phase radioligand binding assay was used to detect binding with Kd’s in the 

high millimolar range.  Nickel-NTA agarose slurry (Qiagen) was washed and 

resuspended in buffer (20 mM potassium phosphate pH 7.0 and 100 mM NaCl) to 

form a 50% (v/v) slurry.  Twenty microliters of the slurry were mixed with 5 nmol of 

His6-tagged protein and 1.0 μCi of radioligand in a final buffer volume of 50 μl.  

Following a 30 minute equilibration, the mixture was transferred to 0.45 μm 

centrifugal filter units (Millipore #UFC30HV0S) and centrifuged at 12000×g for 2 

minutes to remove unbound ligand.  The resin was washed three times by addition of 

500 μl of 50 % ethanol and centrifugation at 12000×g for 2 minutes.  The bound 

ligand was eluted with 250 μl guanidinium HCl, and quantified by scintillation 

counting.  Radioligand eluted from a no-protein control was included to account for 

non-specific binding to the resin, and a control of 0.5 μCi radioligand was used to 

determine counting efficiency.  Dissociation constants were calculated as 

2

d
L Lr Pr PrK

r
− − +

= , where r is the fraction of protein bound to radioligand, P is 

the initial protein concentration, and L is the initial ligand concentration. 
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Chapter 4: The protein design algorithm 
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Potential energy function 

 

Overview 

 The potential energy of a specific protein conformation can be partitioned into 

different categories.  On one extreme, in a quantum calculation, all of the energy is 

electrostatic.  On the other extreme, in an intuitive sense, the energy can be thought of 

in terms of hydrogen bonds, salt bridges, and steric complementarity.  In between, 

there are molecular mechanics models that treat the protein as a collection of atoms 

with partial charges and van der Waals parameters, connected by springs to maintain 

bond lengths and angles.103 

 What is the right type of model to use for protein design?  Currently, most 

protein design algorithms use statistical terms, derived by, for example, counting how 

frequently different types of hydrogen bonds and salt bridges are seen in crystal 

structures.  The advantage of this approach is that the geometry of the interaction does 

not have to be exactly correct to get a reasonable energy, and it can include 

empirically observed phenomena that otherwise might not be modeled correctly.  The 
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disadvantage is that you can’t model cases that are missing in your training set.  With 

more detailed sampling in conformational space, we believe it will be more accurate to 

directly calculate the strengths of salt bridges and hydrogen bonds from Coulomb’s 

law and continuum electrostatics.  Thus, in this paper, we have avoided statistical 

terms, and base all of our calculations on molecular mechanics with continuum 

solvent. 

 We calculate protein stability and protein-ligand dissociation energy as a 

difference between states: 

 

 

 

 

 

Thus, for example, a buried salt bridge might have a Coulomb interaction energy of 

100 kcal/mol, but the dissociation energy will be much less than this, because in the 

undocked state, those charges will have similarly favorable interactions with water.  

These calculations generally have a lot of large terms that almost cancel each other 

out, so it is important to do the calculations very carefully. 

Dissociation energy = protein energy + ligand energy – protein·ligand complex energy 

Stability = unfolded protein energy – protein energy 
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 Our potential energy function (Figure 16) allows us to model effects that are 

typically ignored in protein design (Figure 17). 
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Figure 16.  Potential energy function. 

All parameters14 were from CHARMM22 except for kSASA and Udeprot.  For the generalized-Born 

solvation energy, a water radius of 1.4 Å was used to define the molecular surface.  Distance 

water

torsion angle 

bond and angle 
stretching 

Lennard Jones 

hydrophobic effect is 
proportional to surface area 

electrostatics and solvation treated 
in a continuum solvent model 
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is in angstroms, charge is in elementary charge units, and energy is in kcal/mol.  “332” is the 

Coulomb electrostatic constant for these units. 

 

Variables 

kb spring constant for bond length EVDW van der Waals energy 
b bond length r inter-atom distance 
b0 equilibrium bond length rmin minimum-energy inter-atom distance 
kUB qi, qj charge on atoms i and j 
 

Urey-Bradley constant for atoms 
separated by two bonds εin protein and ligand dielectric constant = 1.0 

S distance between atoms separated by 
two bonds 

εout water dielectric constant = 78.4 

S0 equilibrium distance GB() generalized-Born solvation energy 
kθ spring constant for bond angle ai, aj generalized-Born radii of atoms i and j 
θ bond angle κ inverse Debye-Hückel length (salt 

screening length) 
θ0 equilibrium bond angle kSASA 

 
microscopic surface tension of water95 = 
0.0072 kcal/mol/Å2 kχ, n, δ Fourier series terms for periodic 

barrier to rotation around bonds SASA 
χ torsion angle  
kφ spring constant for torsion angle to 

restrain planar groups 
 

solvent-accessible surface area (the area 
traced out by the center of a spherical 
probe touching the protein’s VDW 
surface); calculated using a water probe 
radius of 1.4 Å 

φ torsion angle 
φ0 equilibrium torsion angle 

Udeprot. deprotonation energy (from a 
thermodynamic cycle based on the pKA’s 
of free amino acids) 
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Figure 17.  Examples of protein behaviors treated by our model.  Factors typically ignored in design calculations are highlighted. 
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Notes 

van der Waals energy: rmin for AB interaction is the arithmetic mean of rmin for AA 

and BB interactions.  EVDW for AB interaction is the geometric mean of EVDW for AA 

and BB interactions.  Bonded and 1,3 atoms (atoms separated by two bonds) are 

excluded from this sum. 

Coulomb electrostatics: Bonded and 1,3 atoms are excluded from this sum. 

Generalized Born solvation energy: All pairs of atoms are included in this sum 

(including self).  Each non-self pair occurs twice in the sum. 

Capping:  The VDW energy was capped at 2000 kcal/mol/atom pair, and the total 

electrostatic energy (Coulomb plus generalized Born) was capped at ±1000 

kcal/mol/atom pair to prevent floating point overflow of Boltzman weights.  In 

well-packed structures, no interaction energies exceeded the caps. 

Hydrogen bonds: These are treated as a combination of electrostatics and van der 

Waals interactions. 

Distance cutoff: None. 

 

Critical parameters 

van der Waals: These should not be modified from the values in CHARMM22.  In 

the design literature, van der Waals parameters are frequently stretched or scaled so as 

not to penalize small steric clashes resulting from limited sampling resolution.  

However, we’ve found that this has the side effect of making hydrogen bonds and salt 

bridges appear stronger than they actually are (see Figure 28 and Table 10). 
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Internal dielectric constant: We found that an internal dielectric constant of 1.0, 

which is the default for CHARMM22, produced the most accurate energies.  In the 

design literature, the internal dielectric constant is frequently set to values between 4 

and 20, to account for rearrangements in the rest of the protein, or to scale down the 

Coulomb energy in the absence of a good solvent model.  We’ve found that this is 

unnecessary (and actually harmful) when the relevant residues are modeled explicitly, 

and a good solvent model is used. 

 

Water 

 Our model treats water as a continuum dielectric with salt and surface tension.  

In a vacuum, the partial charges on the protein atoms interact through Coulomb’s law.  

When we put the protein in water, there is an additional solvation energy term.  Part of 

the solvation energy is roughly proportional to the surface area: VDW interactions 

with solvent, and the entropy and enthalpy of rearrangment of water molecules at a 

surface (the hydrophobic effect).  The rest of the solvation energy is due to partial 

charges in the protein interacting with induced surface charges and ion clouds in the 

solvent (ΔGpolarization).  Charged atoms closer to the protein’s surface have more 

favorable solvation energy and smaller charge-charge interactions.  These energies are 

calculated using the generalized Born equation. 

 

Generalized-Born energy 

 Atomic partial charges in a protein reorient water dipoles, inducing surface 

charges that interact favorably with the partial charges in the protein, and that screen 
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Coulombic interactions within the protein.  Salt forms a counter-ion atmosphere 

around the protein that neutralizes charge over the Debye-Hückel length.  We 

calculated the interaction energy of the protein with these induced solvent charges 

using the generalized-Born equation,15 which provides an approximate solution to the 

Poisson-Boltzmann differential equation.44 

 The generalized-Born approach requires the calculation of generalized-Born 

radii for each atom (Figure 18).  The manuscript compares two numerical approaches 

for obtaining the radii.  In the first approach, generalized-Born radii are computed on 

the basis of an r-4-weighted spatial integral (Figure 19): 
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Here r is the distance from the atom center to each volume element in the integrand.  

The 1/r4 in this equation comes from the fact that the energy of a charge–induced 

dipole interaction (partial charge in the protein interacting with water) is 1/r4.  

Alternatively, more accurate radii are obtained from an empirical sum of r-4- and r-

5-weighted spatial integrals:16 
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where P=3.0.  The integrals were performed on a rectangular grid (0.5 Å resolution) 

with the dielectric boundary defined as the molecular surface.  Grid points were 

assigned to solvent if they were contained within a solvent sphere (1.4 Å) centered on 

a grid point outside the solvent-accessible volume of the protein.  For design 

calculations, the molecular surface was initialized using the crystal structure of the 

scaffold protein, and was iteratively updated using an average of the currently optimal 

structures.  Final energy evaluations on minimized structures used the exact molecular 

surface.  Formulas in the Appendix give values for the spatial integrals from the grid 

boundary to infinity.  A simpler alternative for integrating the solvent on a grid might 

be to analytically integrate outside the spherical atom, then subtract the protein regions 

on the grid outside the atom. 
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Figure 18.  Slice through ribose binding 

protein, showing generalized Born radii.  

The radii correlate with atom burial. 

Figure 19.  Comparison of generalized Born 

radii for protein tyrosine phosphatase 1B 

calculated using an integral formula (y-axis) 

with radii calculated using a finite-difference 

approach (x-axis). 

Similar results were reported in 16. 
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After calculating generalized Born radii for each atom, we can calculate the solvation 

energy using the generalized Born equation: 
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 This equation gives exact answers for the limiting cases of very close and very 

distant charges, and interpolates between these two extremes.  In the limit of a1 = a2 

>> r, the generalized Born equation calculates a solvation energy of: 
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which is called the Born equation.  And in the limit of r >> a, the generalized Born 

equation plus the Coulomb term gives an interaction energy of 1 2
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correct. 

 The generalized Born equation can be modified to handle salt as well:104 
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with 
/

0.343
outI ε

κ =  at 25°C. 

 

Variables: 

κ inverse Debye-Hückel length in Å–1   
I ionic strength in mol/l   
 

A salt concentration of 100 mM was used for the calculations reported here (Figure 

20). 
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Figure 20.  Comparison of solvent polarization energies for a set of small molecules, peptides, 

and proteins calculated using the generalized-Born approach (y-axis) with values calculated 

using a finite-difference approach (x-axis). 

 

Pairwise approximation of solvent accessible surface area 

(SASA) 

 Following Street and Mayo,40 we approximated the total SASA as the sum of 

accessible surface areas for each amino acid within the context of the fixed structural 
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elements of the design, less the probability weighted sum of the pairwise surface areas 

buried by each variable structural element of the design (for example a rotamer or a 

ligand pose). The pairwise surface areas are scaled to correct for over-counting, which 

occurs when multiple variable structural elements simultaneously bury one surface 

patch.  The scaling factors were determined by a linear regression that optimized 

agreement between the pairwise approximation and the exact solvent accessible 

surface areas of 100,000 random conformations of the protein with random sequences 

present at the design positions.  Optimal values of the scaling factors are highly 

under-constrained, due to correlations between the various area terms.  To address this 

issue, we used a singular value decomposition105 to perform the linear regression.  Any 

scaling factors greater than 100 or less than –100 were set to 0, and the regression was 

repeated without them. 

 

SASA (linear regression form) = , ,
variable variable fixed variable 

position position position position

i i i i j i i j
i i j i i j

t A s A s A C
∈ ∈ ≠ ∈ ∈

− − +∑ ∑ ∑ ∑ ∑  

 

Here, variable positions included the repacked residues and the ligand.  The fixed 

positions were the residues in the protein whose identity and conformation were held 

fixed during the design. This linear regression form can be rearranged into a pairwise 

factorable form. 

 

SASA (pairwise form) =  

 



Chapter 4: The protein design algorithm 

 71

C additive constant 
,

variable fixed fixed
position position position

+ ( )i i i i, j j j i
i j j

t A s A s A
∈ ∈ ∈

− −∑ ∑ ∑  SASA of rotamers and ligand poses less 
the pairwise area buried at interfaces 
with fixed structural elements 

, ,
variable variable

position position, <

( )i i j j j i
i j

j i

s A s A
∈ ∈

− +∑ ∑  pairwise area buried at interfaces 
between variable structural elements 

 

Variables: 

Ai Ai,j 
  
 

the accessible surface area of a rotamer, pose 
or fixed conformation at position i within the 
context of the fixed structural elements of the 
design. 

 

The portion of Ai buried by the variable 
rotamer or pose at position j within the 
context of the fixed structural elements of 
the design. 

ti si scaling factors for pairwise buried areas 
 

scaling factors for accessible surface areas of 
rotamers or poses   

 

The interfacial solvation energy is the product of the SASA and a microscopic surface 

tension of 7.2 cal/mol/Å2 95.  The “hydrophobic effect” driving aggregation of 

hydrophobic solutes in water increases in proportion to solute surface area with a 

slope39 of 24 cal/mol/Å2.  This slope is reconciled with the 7.2 cal/mol/Å2 microscopic 

surface tension by adding the van der Waals interaction energy between explicitly 

modeled hydrophobic solutes, which evaluates to roughly 17 cal/mol/Å2 for 

CHARMM22. 

 

Deprotonation energy 

 The structural calculations reported here modeled the pH- and 

environment-dependent titration of histidine and the acidic amino acids. The doubly 

protonated and two singly protonated states of histidine, and the protonated and 

deprotonated states of aspartate and glutamate were modeled as independent rotamers.  

Because molecular-mechanics potentials do not treat changes in covalent bonding, the 
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energy difference between protonated and deprotonated rotamers was computed using 

a thermodynamic cycle (Figure 21).  For example, the deprotonation energy for an 

aspartate residue within a protein (labeled A in Figure 21) was determined indirectly 

by summing two transfer free energies (B and D) and the experimentally measured 

free energy for deprotonation of acetylated asparate amide in free solution (C).  Free 

energies for the small-molecule aspartate derivatives were obtained by building a 

complete set of aspartate side-chain rotamers onto each member of an amino-acid 

backbone ensemble, evaluating the energy of each configuration, and computing the 

free energy as: 

 

U(solution) = –RT ln(partition sum). 

 

Then: 

 

B = U(AspH, solution) – E(AspH, protein) 

C = –2.3RT*(pH – pKa) 

D = E(Asp–, protein) – U(Asp–, solution) 

 

where U is free energy and E is potential energy.  Adding these together: 

 

A = B + C + D = [E(Asp–, protein) – E(AspH, protein)] + [–U(Asp–, solution) + 

U(AspH, solution) – 2.3RT*(pH – pKa)] 
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We denote the terms within the right bracket above, –U(Asp–, solution) + U(AspH, 

solution) – 2.3RT*(pH – pKa), as the deprotonation energy.  It is added to the 

self-energy of each deprotonated rotamer to establish the appropriate energy 

relationship between the deprotonated and protonated forms of the amino acid (Table 

4).  The deprotonation energy is pH dependent, and all of the calculations reported 

here were performed at pH 7.0. 
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Figure 21.  Thermodynamic cycle used to evaluate the deprotonation energy for aspartate 

(A). 

The dashed lines in the top structures represent bonds to the complete polypeptide chain of 

the protein, which is not shown.  The bottom structures depict N-acetyl, N'-methyl aspartate 

α-amide in its protonated and deprotonated forms.  The rotational arrows on the structures at 

the bottom indicate that they are modeled as a structural ensemble, whereas the structures at 

the top are single rotamers. The deprotonation energy is calculated as the sum of two transfer 

energies (B and D) and the experimentally-measured free energy for protonation of the 

acetyl-aspartate amide (C). 
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Amino acid Deprotonation energy 
HSP 0 
HSD –23.19 – 1.36 (pH – 6.74) 
HSE –2.53 – 1.36 (pH – 6.14) 
ASP 37.21 – 1.36 (pH – 3.71) 
APP 0 
GLU 41.64 – 1.36 (pH – 4.15) 
GUP 0 

 
Table 4.  Deprotonation energies for the titratable amino acids in the 6028-member rotamer 

library. 

Experimental pKa values for free amino acids are from ref. 106,107.  We did not include 

protonation states for CYS, TYR, LYS, or ARG because of a lack of published CHARMM22 

parameters for those amino acids.  1.36 = RT ln 10 at T = 25°C. 

 

 

Discrete sampling 

 

Protein scaffold coordinates 

 Hydrogen coordinates were added to scaffold crystal structures using 

Reduce.108 

 

Selection of design positions 

 For ABP, all side chains where the van der Waals spheres were within 1 Å of 

the ligand van der Waals spheres in any of four crystal structures (8ABP, 6ABP, 

1ABE, 5ABP) were selected as design positions.  For RBP, hydrogen bonding and 

hydrophobic contacts determined by the program HBPLUS109 were selected as design 

positions.  The resulting positions are listed in the caption to Figure 10. 
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 For Avastin-VEGF, the repacked residues were hand picked, because with our 

current level of computer power, we were unable to model all interface residues at 

high resolution.  Starting with the 6 Fab positions where mutations have been reported 

to improve the affinity, we then added side chains (except ALA, GLY, PRO) in Fab 

and VEGF contacting side chains at these 6 positions, and also included positions that 

showed a high conformational variability among different crystal structures (1BJ1, 

1CZ8, 1FLT, 1KAT, 1QTY, 1TZH, 1TZI, 1VPP, 2VPF).  The resulting positions are 

listed in the caption to Figure 11. 

 

Rotamer library 

 A detailed rotamer library (including polar and non-polar hydrogens) was 

created by clustering the side chain conformations seen in high-resolution crystal 

structures (Table 5).  Starting with the 18528 structures in Protein Data Bank Release 

#101 (July 2002), we removed theoretical models, structures with resolution > 1.9 Å, 

structures with a CAVEAT record,  and structures with ≤ 10% of atoms in one of the 

20 natural amino acids.  This resulted in a list of 7312 structures.  Hydrogens were 

added to each structure using Reduce108 from the Richardson lab.  The side chain 

conformations for each amino acid were then clustered at the resolution listed in Table 

5.  The clustering process involved selecting the conformation with the most close 

neighbors, discarding all neighbors (defined by an RMS cutoff), and repeating until a 

predetermined fraction of the conformations had been covered.  Finally, each rotamer 

was locally minimized with a constraint of ± 1° on each dihedral angle.  No rotamer in 
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the library corresponds to any of the crystallographic cooordinates of ABP, RBP, or 

Avastin-VEGF. 

 For repacking calculations, rotamers were placed at each variable position of 

the protein scaffold, and energy minimized using dihedral restraints and no 

electrostatics.  The energy minimization slightly adjusted bond lengths and angles to 

match the equilibrium values in CHARMM22.  Rotamers with energies more than 15 

kcal/mol over the lowest energy rotamer of the same amino acid at the same position 

were eliminated. 

 

Amino 
acid 

Number of 
rotamers 

Neighbor RMS 
cutoff (Å) 

Close neighbor 
RMS cutoff (Å) 

Coverage 

ALA 3 0.5 0.3 0.999 
APP 141 0.5 0.3 0.999 
ARG 974 1.0 0.4 0.98 
ASN 132 0.5 0.3 0.999 
ASP 62 0.5 0.3 0.999 
CYS 29 0.5 0.3 0.999 
CYX 8 0.5 0.3 0.999 
GLN 758 0.5 0.3 0.999 
GLU 412 0.5 0.3 0.999 
GLY 1 0.5 0.3 0.999 
GUP 649 0.5 0.3 0.999 
HSD 233 0.5 0.3 0.999 
HSE 255 0.5 0.3 0.999 
HSP 245 0.5 0.3 0.999 
ILE 215 0.5 0.3 0.999 
LEU 325 0.5 0.3 0.999 
LYS 400 1.0 0.4 0.98 
MET 181 0.8 0.4 0.99 
PHE 193 0.5 0.3 0.999 
PRO 8 0.5 0.3 0.999 
SER 32 0.5 0.3 0.999 
THR 64 0.5 0.3 0.999 
TRP 238 0.6 0.3 0.99 
TYR 414 0.5 0.3 0.999 
VAL 56 0.5 0.3 0.999 
Total 6028    

 
Table 5.  The highest resolution rotamer library with 6028 rotamers. 
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APP = protonated Asp, GUP = protonated Glu, HSP = doubly protonated His, HSD = His 

protonated on the delta nitrogen, HSE = His protonated on the epsilon nitrogen, CYX = 

disulfide-bonded cysteine. 
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Figure 22. Ligand sampling and filters. 

Ligand poses were identified by generating conformers of the ligand, and then exploring 

rotational and translational degrees of freedom.  A series of filters was applied to identify 

poses that overlapped well with the-side chain regions of the design positions but not with the 

fixed portions of the scaffold, and that exhibited energies within 10 kcal/mol of the isolated 

ligand. 

 

 A series of 26 ribose and 19 arabinose conformational isomers were generated 

to sample the internal degrees of freedom of the two sugars.  The crystal structure 

coordinates were not included.  The 19 arabinose rotamers were generated by starting 

scaffold 

design position side 
chains 

ligand 
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with the two chair flip conformations of the α and β anomers of the pyranose.  Each of 

these 4 ring conformations adopts 34 hydroxyl rotamers, for a total of 324 rotamers.  

We did not include furanose, aldehyde, or boat conformations.  We calculated the 

CHARMM22 energy of each conformation using TINKER, including a GBSA energy 

term.92  Finally, we applied a 6 kcal/mol cutoff above the lowest energy conformation, 

and then clustered the remaining conformations at 0.5 Å resolution.  The clustering 

process involved selecting the lowest energy conformation, discarding all 

conformations within 0.5 Å RMS of this conformation, and repeating until no 

conformations were left.  The 26 ribose rotamers were generated the same way, except 

that an 8 kcal/mol energy cutoff was applied. 

 These isomers were then rotated in 10° increments along axes defined by a 

triangulated icosahedron, producing 6516 rotational orientations.  Using a fast Fourier 

transform algorithm,110 the internal/rotational ensemble was translated along a 0.5 Å 

grid to find poses that overlapped well with the side-chain regions of the design 

positions but not with fixed regions of the scaffold. (Figure 22).  The energies of poses 

in this subset, excluding the electrostatic energy, were evaluated.  Poses with energies 

exceeding the energy of the isolated ligand by more than 10 kcal/mol were discarded.  

The remaining poses were clustered at 0.5 Å resolution to generate the set of poses 

used for repacking and design calculations. 
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Structural optimization 

 We optimize the bound, unbound, and unfolded states separately.  The 

advantage of this multi-state framework9 is that we can predict conformational 

changes upon binding, and also optimize for the desired combination of stability, 

affinity, and specificity.  In contrast, algorithms that optimize a single target structure, 

such as dead end elimination,34,111 do not distinguish between intramolecular and 

intermolecular interactions, and thus will propose mutations that stabilize the protein 

without improving its interaction with the ligand.61 

 We break the protein/ligand system into several parts, identify the low energy 

conformations of each part, then precompute all the intrinsic energies and interaction 

energy matrices.  This allows us to quickly recalculate the binding energy for different 

amino acid sequences and conformations — all the energy terms have already been 

precomputed. 

 Rotamer probabilities were either initialized randomly, or set to 0’s and 1’s to 

match a single structure generated by simulated annealing or by the FASTER 

procedure.112  Using a mean-field algorithm, the probabilities were then adjusted 

iteratively to minimize the free energy of the system.19  New probabilities for all 

rotamers were first computed using the mean-field energy of each rotamer and the 

Boltzmann equation: 
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Here, Z normalizes the probabilities at a single position so that they sum to one.  To 

prevent oscillating probabilities that do not converge, we updated probabilities with 

the geometric mean of the old and new values: 
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where r is a random number between 0 and 0.5, and m is the smallest positive single-

precision floating point number (~1.18×10–38).  pupdated must be normalized after this 

procedure.  Alternatively, we updated one position at a time in random order, without 

any probability averaging.  The repacking procedure was repeated 10 to 1000 times, 

using different initial rotamer probabilities.  Two-thirds of the repacking runs used the 

single site update method, and the remainder were run using the simultaneous update 

method. 

 The mean field calculation is good at jumping over local barriers that stymie 

gradient-based minimization or molecular dynamics, because there’s no barrier for 

sidechains flipping to completely different rotamer configurations.  However, there is 

a barrier for multiple simultaneous rotamer changes, so the calculation must be 

repeated from different starting probabilities. 

 The most probable structure from the lowest energy mean-field solution was 

subjected to a final local minimization step.  Thus, we discretely sampled a rough 

energy landscape to identify the lowest-lying energy well, and locally minimized to 
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get to its bottom (Figure 23).  The calculated side-chain conformational entropy for 

different sequences typically varied by less than one kcal/mol, which is small relative 

to the other energy terms.  Hu and Kuhlman also observed that side-chain 

conformational entropy makes small contributions in their design calculations.113  

However, it is important to note that we did not include entropy changes outside the 

binding site in our calculation. 
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Figure 23.  Discrete then continuous optimization of protein structure. 

 

 

Unfolded state 

 The intrinsic unfolded-state chemical potential for each amino acid was 

determined by placing a complete rotamer set at the middle position of an ALA-ALA-

ALA tripeptide library comprising multiple peptide backbone conformations with no 

termini (similar to the approach in 99).  The energy of each configuration was 

calculated, and the intrinsic unfolded-state chemical potential (Table 6) was evaluated 

as RT ln(partition sum). 
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 Inter-residue electrostatic interaction energies in the unfolded state were 

calculated following 58, assuming that the distance distribution between residues is 

determined by a random walk.  The total unfolded-state energy was summed as: 

 

Unfolded state energy = 

Inter-residue electrostatic interaction (Gaussian chain model)Intrinsic unfolded-state
chemical potential

2 2( 6 / exp( / 6)erfc( / 6))
( ) 332 i j

i
i i j out

q q d d d
aa

d
π κ κ κ

μ
ε<

−
+ ∗∑ ∑  

with d= effb i j s− + . 

 

Variables: 

μ(aai) intrinsic chemical potential of am. acid at 
position i 

beff effective bond length = 7.5 Å 

qi charge of the amino acid at position i s distance offset = 5 Å 
d RMS inter-residue distance κ inverse Debye-Hückel length in Å–1 
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Amino acid 
Intrinsic μ 
(kcal/mol) 

ALA 1.39 
ARG –272.99 
ASN –78.70 
ASP –110.07 
CYS 1.82 
GLN –57.51 
GLU –86.71 
GLY –8.67 
HIS –44.33 
ILE 6.12 
LEU –12.49 
LYS –62.29 
MET –1.62 
PHE 6.09 
PRO 25.48 
SER 5.38 
THR –15.83 
TRP 7.68 
TYR –10.22 
VAL 1.17 

 
Table 6.  Intrinsic unfolded-state chemical potentials for the amino acids in the 6028-member 

rotamer library. 

 

 

Sequence optimization (genetic algorithm) 

 For sequence design, a random population of sequences was initially chosen.  

Putative energies and structures for each sequence were calculated as described above.  

The population was then ranked by computed ligand affinity, with a limit on allowable 

protein destabilization (10 kcal/mol in the initial generations, and 5 kcal/mol in the 

final generations).  The top ranked sequences were mutated and recombined to 

generate a child population.  This evolutionary procedure was iterated until functional 

improvements ceased to occur.  (See Figure 24)  We started with a high mutation rate 

(0.25 mutation probability per position) and low selection stringency (tournament 
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selection where the best of 4 randomly picked sequences is a parent for the next 

generation).  As the population converged, we decreased the mutation rate to 0.15 and 

increased the selection stringency to tournament selections with 5 – 8 sequences.  See 

Table 7 for details. 

 

Calc phase Generations Seqs/gen* Tournament Mutation Destab. 
(kcal/mol) 

1 23 200 4 0.25 10 
2 21 200 8 0.2 10 
3 21 200 5 0.2 5 
4 21 200 5 0.15 5 
* The initial generation of calculation phases 1 – 3 had between 175 and 224 sequences, 
depending on how many top sequences were included from the previous phase.  The initial 
generation of calculation phase 4 had 844 sequences, which included all point mutants of the 
top 3 sequences, double mutants of the top sequence, and random recombinants of the top 
sequences. 
 
Table 7.  Genetic algorithm parameters. 
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Figure 24.  Genetic algorithm. 
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Appendix: Integrals 

To calculate generalized Born radii, we integrated r-4 or r-5 outside the rectangular 

region x1 < x < x2, y1 < y < y2, z1 < z < z2 using these formulas: 
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Chapter 5: Physics-based design of new 
binding proteins 

 

This chapter reports on unpublished work.  Several collaborators have helped with 

further characterizing these designed proteins, although the results are not yet final and 

are not reported here.  Pavel Strop solved a unliganded crystal structure of one of the 

designed proteins, and it agrees well with the prediction.  Rebecca Fenn is currently 

working on solving a liganded crystal structure.  She and Jan Lipfert collected small 

angle X-ray scattering data on one of the designed proteins, which shows that it 

undergoes the same conformational change upon binding the target ligand as the 

native ribose binding protein. 

 

 

Summary 

Using a standard molecular mechanics potential energy function, we redesigned ribose 

binding protein to bind a series of ligands: L-arabinose, D-xylose, indole-3-acetic acid, 

and estradiol.  The resulting proteins have 5 – 10 mutations from the native, are stable, 

the predicted structures have good hydrogen bonds and shape complementarity, and 

they use motifs similar to natural binding proteins.  All of the designed proteins bind 

to their target ligands with measurable but weak affinity.  The affinity was improved 

by random mutagenesis and screening.  Combined with our earlier results, this is the 

first time a single model has been used to predict structures, binding constants, and to 

design new small-molecule binding sites.  Using a standard model should improve the 
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generality of protein design, which could enable the creation of custom proteins for a 

wide variety of applications, including sensors, enzymes, and protein therapeutics. 

 

 

Introduction 

 There are many well-established experimental techniques for creating new 

binding sites in proteins: phage display, antibodies, and gene shuffling.  These 

techniques start with large random libraries of proteins and select or screen for 

sequences that bind to the desired target.  They are limited by the library size and the 

availability of appropriate selections and screens.  For example, randomizing 12 

residues in a protein yields a sequence size of 1015, but phage display libraries 

generally contain fewer than 1010 different sequences.114  Devising selections can be 

difficult, especially for small molecules that can not be attached to solid support 

without disrupting a large fraction of the ligand’s available binding surface area.  

Furthermore, selections for catalysis are limited by the accuracy and synthetic 

accessibility of a transition state analog. 

 In the long term, we anticipate that a computational technique for engineering 

protein-ligand binding can address some of these limitations.  For example, with 

modern computers, the sequence search algorithms can effectively access a larger 

sequence space than a phage display library.  The computational techniques are also 

not limited by experimental constraints such as linkers (Figure 25), and they can 

directly model an unstable transition state rather than using a stable transition state 

analog. 



Chapter 5: Physics-based design of new binding proteins 

 89

 In the short term, these design calculations provide perhaps the most rigorous 

test of the current models of protein structure and energetics. 

 We previously described a protein design algorithm that uses a standard 

molecular mechanics potential energy function with an accurate continuum solvent 

model.62  The design algorithm takes the structure of a scaffold protein, and the 

structure of a small molecule, and designs a set of mutations needed to create a 

binding site in the scaffold.  We only consider mutations at a limited number of 

“design positions”; the rest of the protein simply serves as a rigid structure for 

constraining the conformational flexibility of the designed binding site. 

 In this paper, we use this algorithm to switch the ligand specificity of ribose 

binding protein (RBP).  High resolution crystal structures have been solved for both 

bound and unbound RBP.115,116  The binding site is lined with sidechain and not 

backbone atoms, which may facilitate its use as a scaffold.  This test system for 

protein design was pioneered by Hellinga,2 who designed trinitrotoluene, lactate, and 

serotonin binding sites in various bacterial periplasmic binding proteins, including 

ribose binding protein.  They showed that these designed proteins could be used as 

sensors, and could be incorporated into signaling pathways that drive gene expression 

in response to trinitritoluene or lactate.  Their landmark paper used a molecular 

mechanics potential energy function (CHARMM22) that was modified by scaling the 

van der Waals repulsion energy, using a distance dependent dielectric constant, 

explicit hydrogen bond term, and various other modifications. 

 In contrast, we test whether an unmodified molecular mechanics potential 

energy function (CHARMM22) can be used for a similar set of binding site design 
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problems.  Using a standard model should improve the generality of protein design,78 

which could enable the creation of custom proteins for a wide variety of applications, 

including sensors, enzymes, and protein therapeutics. 

 

In vitro evolution typically requires a 
linker that can interfere with binding. 

 

Protein design models the protein-ligand 
interaction without a linker. 

 

 

 
Figure 25.  In vitro evolution vs computational protein design. 

 

 

Results 

 We picked the 10 primary ribose contacts in RBP as the core set of design 

positions, and computationally redesigned the protein to bind L-arabinose, D-xylose, 

indole-3-acetic acid, and estradiol (Figure 26).  Additional design positions were 

picked as needed in subsequent iterations of the design calculation (Table 8).  D-

xylose differs from the native ligand, ribose, at a single stereocenter, and L-arabinose 

differs at 2 sterocenters.  Indole-3-acetic acid is the major plant growth hormone, and 

the ligand parameters can be copied from tryptophan.  Estradiol, the major estrogen in 

mammals, was picked as a prototypical hydrophobic ligand. 

linker 

solid support 

protein 

ligand 
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 Ligand parameters (Table 9) were validated by calculating the free energy of 

the α and β anomer of each sugar and comparing it to the experimental value. (Figure 

27). 
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Figure 26.  Target ligands. 

 

 9 13 15 16 89 90 103 105 141 164 190 215 235 
RBP (native) SER ASN PHE PHE ASP ARG SER ASN ARG PHE ASN ASP GLN
RBP arabinose 2 GLN ASN MET TYR VAL MET GLN   MET PHE ASN SER VAL 
RBP xylose 1  ASN PHE PHE GLN GLN     MET PHE ASN SER MET
RBP xylose 2  MET TYR PHE GLN HIS     MET PHE ASN SER GLN
RBP estradiol 4 SER ASN VAL MET ALA ASN ASN  MET PHE ASN SER ILE 
RBP IAA 1  ARG THR MET VAL MET HIS TYR MET PHE ASN ALA SER
RBP IAA 2  ARG THR MET ALA MET HIS TYR MET PHE ASN SER SER
RBP IAA 3   ARG THR MET VAL ASN HIS TYR MET PHE ASN ALA SER
RBP IAA 101A-F11  ARG SER MET GLY CYS HIS TYR MET PHE ASN ALA SER
RBP IAA 95A-C1  ARG SER MET ILE CYS HIS TYR MET PHE ASN ALA SER

 
Table 8.  Sequences of RBP redesigned to bind other ligands. 

Sequence is only shown at positions being designed.  Positively charged amino acids are 

colored blue, negatively charged amino acids are colored red, polar amino acids are colored 

blue, and nonpolar amino acids are colored black. 
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Ligand Atomic partial charges Other energy terms 
D-ribose CHARMM22 CHARMM22 
L-arabinose MM3/PM5 CHARMM22 
D-xylose CHARMM22 CHARMM22 
IAA CHARMM22 CHARMM22 
estradiol Pullman Tripos force field 

 
Table 9.  Ligand parameters. 

Pullman charges117 were calculated using Sybyl (Tripos, St. Louis, MO).  MM3/PM5 charges 

were calculted using CaChe (Fujitsu, Newton, MA).  CHARMM2214 energies were calculated 

using TINKER98.  Tripos force field118 energies were calculated using Sybyl. 
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Figure 27.  Experimental119,120 and calculated β-pyranose energy – α-pyranose energy 

(kcal/mol). 

 

Effect of softening the van der Waals energy 

 The van der Waals energy is frequently softened so as not to penalize the small 

steric clashes resulting from limited sampling resolution.  A side effect of this is to 

make hydrogen bonds appear stronger than they actually are (Figure 28).  This 

encourages the design algorithm to bury charges and polar residues at a designed 
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hydrophobic interface (Table 10).  Therefore, an unmodified VDW energy was used to 

design the proteins described in this paper. 
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Figure 28.  The Lennard-Jones potential is frequently softened in design calculations to compensate for low sampling resolution. 

However, this has the side effect of making hydrogen bonds appear artificially strong.  The figure shows the energy of a C=O...H-N backbone 

hydrogen bond energy (Lennard-Jones plus Coulomb energy using CHARMM22 parameters).  The red line uses the standard Lennard-Jones 

energy term (total energy has a minimum of –2.2 kcal/mol at 1.9 Å).  The blue line uses a van der Waals function where the minimum energy 

has been expanded by ± 0.3 Å (total energy has a minimum of –4.1 kcal/mol at 1.5 Å). 
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13 15 16 89 90 141 164 190 215 235 
Average 

hydrophobicity
ARG GLU MET SER ALA MET PHE ASN SER SER -0.55 
ARG GLU MET TYR SER MET TYR ASN GLN ASN -1.81 
ARG GLU LEU ALA LEU ILE PHE ASN ASN SER 0.09 
ARG GLU THR ALA ASN MET ASN GLU ALA ALA -1.19 
ARG GLU THR ALA ASN MET ASN ASN ASN VAL -1.48 
HIS GLU LEU MET ASN GLU PHE ASN GLU THR -1.29 
ARG GLU MET TYR SER MET TYR ASP GLN ASN -1.81 
ARG ASP ALA MET ASN MET ASN ASN ASN THR -1.71 
ARG GLU THR ALA ASN MET ASN GLU ASN ALA -1.72 D
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 ARG PHE LEU ALA THR MET PHE ASN SER VAL 0.78 
ASN ALA MET ALA ASN MET PHE ASN ALA ALA 0.33 
ASN VAL MET ALA ASN MET PHE ASN ALA ALA 0.57 
ASN VAL MET ALA ASN MET PHE ASN ALA SER 0.31 
ASN SER MET ALA ASN MET PHE ASN ALA ALA 0.07 
ASN VAL MET SER ASN MET PHE ASN ALA ALA 0.31 
MET VAL MET ALA ALA MET PHE ASN ALA ALA 1.64 
ASN VAL MET ALA ASN MET PHE ASN SER ALA 0.31 
ASN ILE MET ALA ASN MET PHE ASN ALA ALA 0.6 
SER VAL MET ALA ASN MET PHE ASN ALA ALA 0.84 D
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 ASN VAL LEU ALA ASN MET PHE ASN ALA ALA 0.76 
 
Table 10.  Designed estradiol binding site in RBP is more polar when VDW stretch = 0.3 Å. 

The average hydrophobicity 121 of the designs with VDW stretch = 0.3 Å is –1.07, the average hydrophobicity of the designs with VDW stretch = 

0.0 Å is 0.57, and the average hydrophobicity of the human estrogen receptor binding site (PDB code: 1A52) is 1.75.  Even without the VDW 

stretch, the designs are still more polar than the human estrogen receptor.  Most of the remaining polar residues are retained from the native 

sequence, so this is presumably due to limitations imposed by the scaffold protein.  2800 rotamers were modeled at each design position. 
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Structures of designed receptors 

 We examine the shape complementarity and hydrogen bonding of the designed 

binding proteins in Figure 29 and Table 11.  All of the designed proteins have good 

shape complementarity and hydrogen bonding, comparable to natural binding proteins. 

 The designed estradiol receptor has a hydrogen bond to one of the hydroxyls.  

There is a conserved phenylalanine and two methionines seen at comparable positions 

in both the human estrogen receptor and the designed estradiol binding protein, which 

is remarkable given that these binding sites are hosted on proteins with completely 

different folds.  The phenylalanines interact with the estradiol via favorable 

electrostatic π-π interactions,122 and the methionines interact via favorable 

hydrophobic interactions. 

 The designed indole acetic acid binding protein has an arginine forming a salt 

bridge with the carboxylic acid in the ligand, and all of the hydrogen bond donors and 

acceptors in the ligand are satisfied. 

 Importantly, these binding motifs were picked out directly from an unmodified 

molecular mechanics potential energy function, and not by explicitly asking the design 

algorithm for particular types of interactions. 
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Figure 29.  Structures of designed and natural binding proteins. 

Top row: ligand (solid green) and protein binding pocket (blue mesh).  The number is the shape complementarity 91, which ranges from 0 for no 

complementarity to 1 for perfect complementarity.  Bottom row: Hydrogen bonds and other key protein-ligand interactions.  Crystal structures 

are shown for the natural binding proteins, and predicted structures shown for the designed proteins. 
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Ligand Protein Kd Protein 

stability 
(kcal/mol) 

Protein-ligand 
hydrogen bonds 

Shape 
complementarity 

ribose RBP (2DRI) 210 nM† 2.5 11 0.86 
L-arabinose RBP 790 mM* 2.5   
 ABP (1ABE) 190 nM*  8 0.81 
 AraC (2ARC)   6 0.77 
 RBP arabinose 2 250 mM*  6 0.79 
D-xylose RBP 700 mM* 2.5   
 RBP xylose 1 160 mM* 4.2 5 0.82 
 RBP xylose 2 270 mM*  5 0.80 
estradiol RBP 60 mM* 2.5   
 Human estrogen receptor (1A52) 10 pM‡  2 0.72 
 IgG – estradiol (1JGL) 2 nM‡  4 0.87 
 RBP estradiol 4 46 mM* 2.0 1 0.75 
IAA RBP 32 mM* 2.5   
 RBP IAA 1 11 mM* 2.5 5 0.81 
 RBP IAA 2 14 mM* 1.0 5 0.79 
 RBP IAA 3 16 mM* 1.9 5 0.82 
 RBP IAA 101A-F11 1.4 mM* 2.0 5 0.69 
 RBP IAA 95A-C1 1.1 mM* 4.4 3 0.73 

 
Table 11.  Properties of designed and natural binding proteins. 

Designed and selected proteins are highlighted.  Kd was determined as follows: * solid phase radioligand binding assay, † centrifugal 

concentrator assay, ‡ published value.  Stability was measured by extrapolating urea denaturation curves to 0 urea concentration.  Hydrogen 

bonds and shape complementarity were calculated using predicted structures for designed proteins, and the crystal structures for native 

proteins. 
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Experimental characterization of designed receptors 

 The measured dissociation constants for the designed proteins are shown in 

Table 11.  The native has very low affinity for the target ligands, and the designed 

proteins all improve on this affinity, although the Kd’s are still in the millimolar range.  

The designed proteins have expression levels and stabilities comparable to the native, 

despite having 5 – 10 mutations from the native.  In contrast, if we remove the 

stability requirements from the design calculation, the resulting designed proteins have 

low expression levels and little secondary structure as measured by circular dichroism. 

 Since the designed interactions are so weak, they might be due to a non-

specific effect, such as destabilization of the protein, or a simple change in the size of 

the binding pocket.  To address this possibility, we constructed a library of RBP 

variants using mutagenic PCR,123 and also by QuikChange mutagenesis with 

degenerate codons (N N G/C) to randomize positions in the binding site.  We 

sequenced 12 random clones from the library, and they had an average of 3.1 

mutations/clone, with only a single sequence containing no mutations.  We then 

screened 48 library members for binding to xylose and arabinose.  The tightest binder 

from both screens was the native sequence, indicating that the improved binding 

affinity of the designed sequences is not due to a non-specific effect. 

 

Experimental screen 

 Given the good shape complementarity and hydrogen bonding in the predicted 

binding site structures, the weak affinity of the designed interactions is surprising.  To 
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test the possiblity that the designed sequences are close to a more optimal solution, but 

missed it because of errors in the potential energy function, or limitations in the 

structural sampling, we constructed a library of variants of the RBP IAA design.  

Part of the library was generated using mutagenic PCR starting from the 3 designed 

sequences.  The rest of the library was generated using QuikChange mutagenesis with 

degenerate oligos designed to match the amino acid frequencies seen in the top 72 

sequences from the RBP IAA design, including a low mutation rate to other amino 

acids (Table 12).  We screened 279 sequences from the library, and the best two 

sequences, 95A-C1 and 101A-F11, have dissociation constants of 1.1 mM and 1.4 

mM respectively (Table 8, Table 11).  In the next round of selection, the 3 designed 

sequences and the top 4 sequences from the screen were shuffled,124 followed by 

mutagenic PCR.125  186 sequences were screened from the second round, and no 

further improvement was seen in binding affinity.  Both of our top hits contain 

mutations to cysteine, which were not allowed in the design calculation to prevent 

disulfide bond formation. 

 Thus, the only way the screen was able to improve the affinity of the designed 

binding proteins was by going outside the parameters of the original design problem.  

This suggests that the design calculation may have done the best job possible, given 

the constraints of the scaffold and the mutations it was allowed to make.  To examine 

this hypothesis further, we took the top two sequences from the screen and plugged 

them back into the calculation to determine their predicted affinities.  101A-F11 is 

predicted to bind tighter than the designed sequences, which is correct.  95A-C1 is 

predicted to bind less well than the designed sequences, which is incorrect.  Thus, 
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101A-F11 was missed by the design algorithm because of the sequence restrictions on 

the design algorithm, and 95A-C1 was missed because of problems with the sampling 

or potential energy function. 

 

 A3 B2 C2 D E F G H 
 13 15 16 89 90 103 105 141 164 190 215 235

ALA 0% 0% 0% 33% 7% 0% 0% 0% 0% 0% 61% 46%
ARG 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
ASN 0% 0% 0% 0% 8% 18% 0% 0% 0% 100% 3% 0%
ASP 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%
GLN 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0%
GLU 0% 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0%
HIS 0% 0% 0% 0% 0% 32% 0% 0% 0% 0% 0% 0%
ILE 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

LEU 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0%
LYS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MET 0% 0% 100% 1% 32% 0% 0% 100% 0% 0% 0% 0%
PHE 0% 0% 0% 0% 6% 0% 25% 0% 100% 0% 0% 0%
SER 0% 28% 0% 0% 0% 0% 0% 0% 0% 0% 36% 53%
THR 0% 72% 0% 13% 0% 0% 0% 0% 0% 0% 0% 1%
TRP 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
TYR 0% 0% 0% 0% 25% 0% 75% 0% 0% 0% 0% 0%
VAL 0% 0% 0% 51% 17% 47% 0% 0% 0% 0% 0% 0%

exp(–Σ p ln p) 1.0 1.8 1.0 3.0 5.8 3.1 1.8 1.0 1.0 1.0 2.2 2.1
 
Table 12.  RBP-IAA library. 

We generated a library of RBP variants based on amino acid frequencies in the top 72 

sequences from the RBP IAA design, plus a low frequency of mutation to other amino acids.  

In the first round, 10% of the oligos had degenerate N N G/C codons.  In the second round, 10 

– 25% of the oligos had degenerate N N G/C codons.  Letters A – H indicate mutagenic oligos 

 

 

Discussion 

 We redesigned RBP to bind a series of other ligands, using a standard 

molecular mechanics potential energy function.  The resulting proteins have 5 – 10 

mutations from the native, are stable, and the predicted structures have good hydrogen 
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bonds and shape complementarity, and use similar motifs seen in natural binding 

proteins.  All of the designed proteins bound to their target ligands with measurable 

but very weak affinity, in the millimolar range. 

 Furthermore, we show that protein design can be used to design libraries for 

screening.  Essentially, the design algorithm picks out a promising region of sequence 

space, vastly reducing the number of sequences that must be screened experimentally. 

 Why do the designed binding proteins have such poor affinity for their target 

ligands?  Several aspects of the design algorithm need improvement: the energy 

function, structural sampling, and scaffold selection. 

 Current molecular mechanics potential energy functions have several known 

limitations.  They mispredict hydrogen bond geometries 126, ignore protein 

polarization, do not model lone pairs, and do not model quantum effects.  

Furthermore, continuum solvent models do not properly treat tightly bound water 

molecules.  Many groups are working to address these limitations, but this is a 

challenging problem, because fixing one problem can often have unintended side 

effects.  Thus, changes to the potential energy function must be tested against a wide 

range of experimental data and quantum calculations. 

 Structural sampling is also a problem, due to the huge space of potential 

protein conformations.  Currently, we use a fixed backbone and only model rotamer 

flexibility for sidechains directly contacting the ligand.  However, positions far from a 

binding site can often affect binding,127 so it may be important to include additional 

design positions.  More sampling will be possible with increases in computer power, 

but there is also room for clever sampling strategies.  For example, Baker includes 
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backbone flexibility by alternating between sequence design on a fixed backbone, and 

structural optimization for a designed sequence.7  However, greater structural 

sampling also requires a more accurate energy function, as there is a wider range of 

conformations to be evaluated.  In other words, limited structural sampling can 

constrain a poor energy function from straying too far from reality. 

 Scaffold selection is perhaps the least examined step in protein design, but it is 

important to choose a scaffold that is compatible with the ligand.  Presumably, it will 

be easier to redesign a protein to bind a ligand that is similar to the natural ligand.  

Some protein folds can host a wide range of binding sites, such as antibodies binding 

different antigens, or alpha/beta barrel proteins which host a wide range of enzyme 

active sites.1  Even these natural scaffolds have limitations: antibodies, for example, 

do not easily bind to certain targets.128  Beyond these observations, there are very few 

general rules for picking the right scaffold. 

 

 

Materials and methods 

 

Characterization of designed proteins 

Designed proteins were constructed, expressed, purified, and binding constants were 

measured as decribed earlier.62  For the solid phase radioligand binding assay, the 

wash solution was chosen to optimize the ratio of ligand eluted from Ni-NTA resin + 

protein and ligand eluted from Ni-NTA resin alone.  Xylose binding assays used water 

for the wash.  IAA, ribose, and arabinose binding assays used 50% (v/v) ethanol + 
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50% water for the wash.  Estradiol binding assays used ethanol for the wash.  Protein 

stability was calculated from urea melting curves measured using the circular 

dichroism signal at 220 nm by linearly extrapolating the measured stability back to 0 

urea concentration.129 

 

Library screening 

The libraries were transfected into BL21 DE3 E coli, and clones were expressed in 1.3 

ml culture in 96-well blocks using Airpore tape (Qiagen).  Cultures were shaked at 

300 rpm for 5 hours at 37°C, induced with 1 mM IPTG, and shaked for 5 hours more.  

Protein was purified using Qiagen Ni-NTA resin using the manufacturer’s protocol.  

For native RBP, this yields 1 nmol protein / well.  Binding was measured using a solid 

phase radioligand assay,62 assumuing native levels of expression.  This effectively 

penalizes poorly expressed proteins by raising their apparent Kd. 
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Chapter 6: Conclusion 
 

 Computer simulation tools play an important role in established branches of 

engineering, such as designing aircraft, bridges, buildings, and circuits.  In many 

cases, the computer can tell us how good our design is before we even build it.  Our 

goal is to produce tools that will move protein engineering towards the same level of 

sophistication.  Specifically, we’ve developed an algorithm to engineer a new ligand 

binding site into a protein, or remodel an existing one to fit a different ligand.  This 

algorithm could eventually be used to design custom sensors, enzymes, and protein 

therapeutics. 

 The design algorithm has two major components: a calculation to determine 

the ligand’s binding affinity for a given amino acid sequence, and a genetic algorithm 

that “evolves” the amino acid sequence to optimize the calculated binding affinity.  To 

calculate the energy of a given molecular conformation, we use a standard molecular 

mechanics potential with an accurate continuum solvent model.  To model 

conformational changes and thermal fluctuations, we represent the protein / ligand 

system as a probabilistic ensemble of different backbone, side chain, and ligand 

conformations.  To ensure stability and specificity, we compare the free energy of the 

bound state with several competing states, such as the unbound state or the protein 

bound to a related molecule. 

 Using this algorithm, we were able to predict binding constants, active site 

structures, and to design new small molecule binding proteins (Figure 30).  This is the 

first successful redesign of an entire binding site based on an unmodified molecular-
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mechanics potential energy function.  It is also the first time a single model has been 

used to predict structures, binding constants, and to design new small-molecule 

binding sites. 

 

 

 



Chapter 6: Conclusion 

 107

 

We developed a physics-based model … 

 

that predicts binding constants … 
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Designing for specificity 

 In this thesis, the genetic algorithm was used to select for affinity and stability.  

Other types of selections are also possible.  For example, we can select for specificity, 

hydrogen bonding, geometry of catalytic residues, etc.  Figure 31 shows that we can 

select out mutants of arabinose binding protein (ABP) that have various combinations 

of predicted affinity and specificity for arabinose and galactose.  Native ABP binds to 

both arabinose and galactose.  Figure 32 shows that predicted specificity for arabinose 

is achieved by creating a steric clash with the extra CH2OH group in galactose. 
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Figure 31.  Designing for specificity in arabinose binding protein. 

Each point represents a single sequence. 
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Figure 32.  Structural determinants of specificity. 

Space for galactose CH2OH is seen in the native and arabinose binding design (both of which bind galactose), but not in the specificity design. 
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Energetic vs structural predictions 

We have found that structures are easier to predict than energies.  This can be 

understood as follows.  If the bound state is a deep well in the energy landscape, then 

errors in the energy function will affect the well depth (dissociation energy) much 

more than the well position (bound structure).  See Figure 33. 

 
 

Figure 33.  Energetic vs structural predictions in an inaccurate energy model. 

 

 

Comparison to more established branches of 

engineering 

 Computational protein design is a young field.  Can we take any clues from 

more established branches of engineering?  For example, in electronic circuit design, 

if you connect a bunch of transistors in a random fashion, it will be very difficult to 

predict the behavior of the system without doing detailed computer simulations.  Yet, 
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this is our approach to protein design: generate a bunch of random sequences and try 

to predict their behavior.  Of course, circuits are not designed that way.  Instead, 

circuits are built up from a set of modular components, with well defined rules for 

how these modules can be connected to each other.  For example, logic inputs have to 

be at 0 or 5 volts, you can’t switch them too fast, there’s a maximum amount of 

current you should try to draw from certain outputs, and so on.  If you follow these 

rules, then you can understand the behavior of the system just by thinking about it.  

However, if you violate the rules, then it’s harder to predict what will happen, and you 

have to look inside each module to figure out what will happen. 

 Similarly, it might be possible to design a set of modular components for use 

in protein engineering.  For example, specific protein-protein interaction motifs might 

be displayed side-by-side in a combinatorial fashion to create a larger set of interaction 

motifs. 

 Alternatively, there might be a set of rules for identifying amino acid 

sequences whose behaviour will be difficult to predict.  This set of rules would be 

used to screen which sequences are run through a mean field calculation. 

 

 

Application: Sensors 

 Binding is perhaps the simplest function that a protein can perform.  However, 

with appropriate modifications to the scoring function that the genetic algorithm uses 

to select “good” sequences, the binding site design algorithm can be extended to 

engineer proteins with more sophisticated functions. 
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 For example, if the binding event can be transduced into a detectable signal, 

this would produce a biosensor (Figure 34).  One strategy involves adding a prosthetic 

fluorophore that occludes a binding site.130  Then, when the ligand binds, the 

fluorophore will swing out into solvent, changing its fluorescence.  A second strategy 

involves attaching two fluorophores or fusing two fluorescent proteins to a protein that 

undergoes a conformational change upon binding.131-134  Then, ligand binding can be 

detected as a change in fluorescence resonance energy transfer (FRET).  A third 

strategy involves taking an allosteric enzyme that produces a colored product, and 

engineering a binding site that stabilizes the enzyme’s active conformation.135,136 

 

 

 
 
 
Figure 34. Biosensor.  Binding induces a conformational change that 
results in a change in fluorescence or enzymatic activity. 

 

 There already are many systems for detecting small molecules from complex 

mixtures, including mass spectrometry, antibody-based assays, enzyme-coated 

electrodes, and arrays of materials whose electrical or physical properties change 

when molecules are adsorbed.  Computationally engineered protein biosensors have 

some potential advantages over these competing technologies.  Importantly, the signal 

readout is directly coupled to binding, does not require additional reagents or 
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expensive equipment, and the analyte does not need to be labeled.  Furthermore, once 

a suitable sensor scaffold is identified, it can be engineered to detect a wide range of 

different molecules, enabling the creation of small-molecule microarrays that could 

detect a panel of biomarkers for medical diagnostic purposes (Table 13). 
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Application  Molecule 
Subcellular fluorescence 
imaging of signaling 
molecules 

 IP3, cAMP, leukotrienes 

Detecting bacteria Gram negative bacteria lipid A (conserved portion of LPS) 
 Staph. aureus toluene 
 Klebsiella pneumoniae methyl ethyl ketone 
 Pseudomonas aeruginosa o-aminoacetophenone 
 Bacillis dipicolinic acid 
 Bacterial vaginitis putrescine 
Blood / urine tests Metabolic molecules ≈ 2500 metabolites in humans 
 Hormones  
 Therapeutic drugs with a low therapeutic 

index 
theophylline, digoxin, phenytoin, 
cyclosporine, methotrexate 

 Illicit drugs  
 Toxins  
Cancer screening Lung cancer in breath: toluidine, 

acetophenone, benzothiazole 
 Pheochromocytoma or neuroblastoma in urine: vanillylmandelic acid 
 Carcinoid tumors in urine: 5-hydroxyindoleacetic 

acid 
Fertility test In axillary secretions during ovulation: dehydroxyepiandrosterone sulfate 

 

Table 13.  Sensor applications. 
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Application: Custom enzymes 

 Modeling enzymes computationally is much more difficult than modeling non-

covalent binding, because making and breaking covalent bonds needs to be treated 

quantum mechanically.  However, simply binding the substrates in the correct 

orientation required for reactivity and hence stabilizing the transition state, can 

significantly speed up a reaction.  For example, when the entire catalytic triad (Asp, 

His, Ser) of a serine protease is mutated, the mutant enzyme still produces 3 orders of 

magnitude of rate enhancement.137  Published catalytic antibodies provide up to 8 

orders of magnitude rate enhancement, although 4 orders of magnitude is more 

typical.  Thus, even if we ignore covalent chemistry, we can still get significant 

catalysis with non-covalent stabilization of the transition state (Figure 35). 

 Furthermore, if we do know the desired geometry of the catalytic residues, we 

can ask the genetic algorithm to rank sequences based on both non-covalent transition 

state stabilization and proper predicted orientation of the catalytic residues. 

 

 

 
 
 
Figure 35.  Binding to the transition state of a reaction catalyzes that 

reaction. 
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 Custom enzymes could be used for chemical synthesis and pharmaceutical 

manufacturing.  The extraordinary specificity of enzyme-catalyzed reactions stands in 

stark contrast to inorganic catalysts, which are typically very promiscuous.  Thus, 

laboratory synthesis of complex molecules typically involves multiple steps, and 

multiple protecting groups that have to be added and removed at various points during 

the reaction.  Having a customizable toolbox of enzymes that performs a desired set of 

reactions specifically could enable one-pot multi-step synthesis without protecting 

groups. 

 Other possible applications for custom enzymes include: custom proteases and 

restriction enzymes for molecular biology experiments, enzymes to degrade toxins and 

biofilms, and enzymes to remove antigens from transplanted cells. 

 

 

Application: Therapeutic proteins 

 Design of better protein therapeutics will probably be the most significant 

commercial application of computational protein design.  Therapeutic antibodies have 

been developed for a wide range of indications, from anti-cancer to anti-inflammatory.  

They currently have $5.1 billion in annual sales, and 30 antibodies are in late stage 

clinical trials. 

 Antibodies are the most widely used custom binding proteins, but they have 

several known limitations.  Human and mouse antibodies are unable to bind to deep 

grooves,128 and other targets have proven elusive as well.138  Many antibodies are 

unstable or aggregation-prone.139  Non-human antibodies are immunogenic in humans.  
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Therapeutic antibodies are glycosylated and thus more expensive to manufacture.  

Finally, the large size of whole antibodies may limit their tissue distribution. 

 Many of these problems can be addressed by moving to a small, stable scaffold 

protein that can be expressed in E. coli.  Many such scaffolds have been proposed, 

including A domains, fibronectin, PDZ domains, ankyrin repeat proteins, and protein 

A.140-142  Computational protein design, followed by experimental screening or 

selection experiments, could be used to engineer new binding sites in these scaffolds.  

The design framework described in this thesis can be used to select for affinity, 

stability, and specificity.  Furthermore, computational techniques are available for 

predicting aggregation143 and immunogenicity.144,145 

 



118 

References 
 

1. Hegyi, H. & Gerstein, M. (1999). The relationship between protein structure 
and function: a comprehensive survey with application to the yeast genome. J. 
Mol. Biol. 288, 147-64. 

2. Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W. (2003). 
Computational design of receptor and sensor proteins with novel functions. 
Nature 423, 185-90. 

3. Dwyer, M. A., Looger, L. L. & Hellinga, H. W. (2004). Computational design 
of a biologically active enzyme. Science 304, 1967-71. 

4. Dwyer, M. A., Looger, L. L. & Hellinga, H. W. (2008). Retraction. Science 
319, 569. 

5. Dahiyat, B. I. & Mayo, S. L. (1997). De novo protein design: fully automated 
sequence selection. Science 278, 82-7. 

6. Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T. & Kim, P. S. (1998). High-
resolution protein design with backbone freedom. Science 282, 1462-7. 

7. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L. & Baker, 
D. (2003). Design of a novel globular protein fold with atomic-level accuracy. 
Science 302, 1364-8. 

8. Dahiyat, B. I. & Mayo, S. L. (1997). De novo protein design: Fully automated 
sequence selection. Science 278, 82-87. 

9. Havranek, J. J. & Harbury, P. B. (2003). Automated design of specificity in 
molecular recognition. Nat. Struct. Biol. 10, 45-52. 

10. Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., Chan, C., 
Chung, H. S., Eivazi, A., Yoder, S. C., Vielmetter, J., Carmichael, D. F., 
Hayes, R. J. & Dahiyat, B. I. (2006). Engineered antibody Fc variants with 
enhanced effector function. Proc. Natl. Acad. Sci. USA 103, 4005-10. 

11. Steed, P. M., Tansey, M. G., Zalevsky, J., Zhukovsky, E. A., Desjarlais, J. R., 
Szymkowski, D. E., Abbott, C., Carmichael, D., Chan, C., Cherry, L., Cheung, 
P., Chirino, A. J., Chung, H. H., Doberstein, S. K., Eivazi, A., Filikov, A. V., 
Gao, S. X., Hubert, R. S., Hwang, M., Hyun, L., Kashi, S., Kim, A., Kim, E., 
Kung, J., Martinez, S. P., Muchhal, U. S., Nguyen, D. H., O'Brien, C., 
O'Keefe, D., Singer, K., Vafa, O., Vielmetter, J., Yoder, S. C. & Dahiyat, B. I. 
(2003). Inactivation of TNF signaling by rationally designed dominant-
negative TNF variants. Science 301, 1895-8. 

12. Kortemme, T., Joachimiak, L. A., Bullock, A. N., Schuler, A. D., Stoddard, B. 
L. & Baker, D. (2004). Computational redesign of protein-protein interaction 
specificity. Nat. Struct. Mol. Biol. 11, 371-9. 

13. Jiang, L., Althoff, E. A., Clemente, F. R., Doyle, L., Rothlisberger, D., 
Zanghellini, A., Gallaher, J. L., Betker, J. L., Tanaka, F., Barbas, C. F., 3rd, 
Hilvert, D., Houk, K. N., Stoddard, B. L. & Baker, D. (2008). De novo 
computational design of retro-aldol enzymes. Science 319, 1387-91. 

14. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., 
Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., 



References 

 119

Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., 
Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, 
J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. & 
Karplus, M. (1998). All-atom empirical potential for molecular modeling and 
dynamics studies of proteins. J. Phys. Chem. B 102, 3586-3616. 

15. Bashford, D. & Case, D. A. (2000). Generalized born models of 
macromolecular solvation effects. Annu. Rev. Phys. Chem. 51, 129-152. 

16. Lee, M. S., Salsbury, F. R. & Brooks, C. L. (2002). Novel generalized Born 
methods. J. Chem. Phys. 116, 10606-10614. 

17. Lovell, S. C., Word, J. M., Richardson, J. S. & Richardson, D. C. (2000). The 
penultimate rotamer library. Proteins: Structure Function and Genetics 40, 
389-408. 

18. Katchalskikatzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C. & 
Vakser, I. A. (1992). Molecular-Surface Recognition - Determination of 
Geometric Fit between Proteins and Their Ligands by Correlation Techniques. 
Proceedings of the National Academy of Sciences of the United States of 
America 89, 2195-2199. 

19. Koehl, P. & Delarue, M. (1996). Mean-field minimization methods for 
biological macromolecules. Curr. Opin. Struct. Biol. 6, 222-6. 

20. Forrest, S. (1993). Genetic algorithms: principles of natural selection applied to 
computation. Science 261, 872-8. 

21. Kortemme, T., Joachimiak, L. A., Bullock, A. N., Schuler, A. D., Stoddard, B. 
L. & Baker, D. (2004). Computational redesign of protein-protein interaction 
specificity. Nature structural & molecular biology 11, 371-9. 

22. Kauzmann, W. (1959). Some factors in the interpretation of protein 
denaturation. Adv. Protein Chem. 14, 1-63. 

23. Mackerell, A. D., Jr. (2004). Empirical force fields for biological 
macromolecules: overview and issues. J. Comput. Chem. 25, 1584-604. 

24. Jorgensen, W. L. & Tirado-Rives, J. (2005). Potential energy functions for 
atomic-level simulations of water and organic and biomolecular systems. Proc. 
Natl. Acad. Sci. USA 102, 6665-70. 

25. Gordon, D. B., Marshall, S. A. & Mayo, S. L. (1999). Energy functions for 
protein design. Curr. Opin. Struct. Biol. 9, 509-13. 

26. Pokala, N. & Handel, T. M. (2001). Review: protein design--where we were, 
where we are, where we're going. J Struct Biol 134, 269-81. 

27. Lazaridis, T. & Karplus, M. (2000). Effective energy functions for protein 
structure prediction. Curr. Opin. Struct. Biol. 10, 139-45. 

28. Mohanty, D., Dominy, B. N., Kolinski, A., Brooks, C. L., 3rd & Skolnick, J. 
(1999). Correlation between knowledge-based and detailed atomic potentials: 
application to the unfolding of the GCN4 leucine zipper. Proteins 35, 447-52. 

29. Ben-Naim, A. (1997). Statistical potentials extracted from protein structures: 
Are these meaningful potentials? J. Chem. Phys. 107, 3698-3706. 

30. Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. (1997). Assembly of 
protein tertiary structures from fragments with similar local sequences using 



References 

 120

simulated annealing and Bayesian scoring functions. Journal of molecular 
biology 268, 209-25. 

31. Dehouck, Y., Gilis, D. & Rooman, M. (2006). A new generation of statistical 
potentials for proteins. Biophys J. 90, 4010-7. 

32. Kortemme, T. & Baker, D. (2002). A simple physical model for binding 
energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. USA 99, 
14116-21. 

33. Dahiyat, B. I., Gordon, D. B. & Mayo, S. L. (1997). Automated design of the 
surface positions of protein helices. Protein Sci 6, 1333-7. 

34. Looger, L. L. & Hellinga, H. W. (2001). Generalized dead-end elimination 
algorithms make large-scale protein side-chain structure prediction tractable: 
implications for protein design and structural genomics. J. Mol. Biol. 307, 429-
45. 

35. Wisz, M. S. & Hellinga, H. W. (2003). An empirical model for electrostatic 
interactions in proteins incorporating multiple geometry-dependent dielectric 
constants. Proteins 51, 360-77. 

36. Lazaridis, T. & Karplus, M. (1999). Effective energy function for proteins in 
solution. Proteins 35, 133-52. 

37. Kortemme, T., Morozov, A. V. & Baker, D. (2003). An orientation-dependent 
hydrogen bonding potential improves prediction of specificity and structure for 
proteins and protein-protein complexes. J. Mol. Biol. 326, 1239-59. 

38. Dahiyat, B. I. & Mayo, S. L. (1997). Probing the role of packing specificity in 
protein design. Proc. Natl. Acad. Sci. USA 94, 10172-7. 

39. Chothia, C. (1974). Hydrophobic bonding and accessible surface area in 
proteins. Nature 248, 338-9. 

40. Street, A. G. & Mayo, S. L. (1998). Pairwise calculation of protein solvent-
accessible surface areas. Fold. Des. 3, 253-8. 

41. Choudhury, N. & Pettitt, B. M. (2005). On the mechanism of hydrophobic 
association of nanoscopic solutes. J. Am. Chem. Soc. 127, 3556-67. 

42. Wagoner, J. A. & Baker, N. A. (2006). Assessing implicit models for nonpolar 
mean solvation forces: the importance of dispersion and volume terms. Proc. 
Natl. Acad. Sci. USA 103, 8331-6. 

43. Eisenberg, D. & McLachlan, A. D. (1986). Solvation energy in protein folding 
and binding. Nature 319, 199-203. 

44. Honig, B., Sharp, K. & Yang, A. S. (1993). Macroscopic Models of Aqueous 
Solutions: Biological and Chemical Applications. J. Phys. Chem. 97, 1101-
1109. 

45. Marshall, S. A., Vizcarra, C. L. & Mayo, S. L. (2005). One- and two-body 
decomposable Poisson-Boltzmann methods for protein design calculations. 
Protein Sci. 14, 1293-304. 

46. Pokala, N. & Handel, T. M. (2005). Energy functions for protein design: 
adjustment with protein-protein complex affinities, models for the unfolded 
state, and negative design of solubility and specificity. J. Mol. Biol. 347, 203-
27. 



References 

 121

47. Lee, M. S., Feig, M., Salsbury, F. R., Jr. & Brooks, C. L., 3rd. (2003). New 
analytic approximation to the standard molecular volume definition and its 
application to generalized Born calculations. J. Comput. Chem. 24, 1348-56. 

48. Yu, Z., Jacobson, M. P. & Friesner, R. A. (2006). What role do surfaces play in 
GB models? A new-generation of surface-generalized born model based on a 
novel gaussian surface for biomolecules. J. Comput. Chem. 27, 72-89. 

49. Feig, M., Onufriev, A., Lee, M. S., Im, W., Case, D. A. & Brooks, C. L., 3rd. 
(2004). Performance comparison of generalized born and Poisson methods in 
the calculation of electrostatic solvation energies for protein structures. J. 
Comput. Chem. 25, 265-84. 

50. Schymkowitz, J. W., Rousseau, F., Martins, I. C., Ferkinghoff-Borg, J., 
Stricher, F. & Serrano, L. (2005). Prediction of water and metal binding sites 
and their affinities by using the Fold-X force field. Proc. Natl. Acad. Sci. USA 
102, 10147-52. 

51. Jiang, L., Kuhlman, B., Kortemme, T. & Baker, D. (2005). A "solvated 
rotamer" approach to modeling water-mediated hydrogen bonds at protein-
protein interfaces. Proteins 58, 893-904. 

52. Morozov, A. V., Kortemme, T., Tsemekhman, K. & Baker, D. (2004). Close 
agreement between the orientation dependence of hydrogen bonds observed in 
protein structures and quantum mechanical calculations. Proceedings of the 
National Academy of Sciences of the United States of America 101, 6946-51. 

53. Morozov, A. V. & Kortemme, T. (2005). Potential functions for hydrogen 
bonds in protein structure prediction and design. Adv. Protein. Chem. 72, 1-38. 

54. Friesner, R. A. (2006). Modeling polarization in proteins and protein-ligand 
complexes: Methods and preliminary results. Adv. Protein Chem. 72, 79-104. 

55. Maple, J. R., Cao, Y. X., Damm, W. G., Halgren, T. A., Kaminski, G. A., 
Zhang, L. Y. & Friesner, R. A. (2005). A polarizable force field and continuum 
solvation methodology for modeling of protein-ligand interactions. Journal of 
Chemical Theory and Computation 1, 694-715. 

56. Friesner, R. A. (2005). Ab initio quantum chemistry: methodology and 
applications. Proc. Natl. Acad. Sci. USA 102, 6648-53. 

57. Cho, A. E., Guallar, V., Berne, B. J. & Friesner, R. (2005). Importance of 
accurate charges in molecular docking: quantum mechanical/molecular 
mechanical (QM/MM) approach. J. Comput. Chem. 26, 915-31. 

58. Zhou, H. X. (2003). Direct test of the Gaussian-chain model for treating 
residual charge-charge interactions in the unfolded state of proteins. J. Am. 
Chem. Soc. 125, 2060-2061. 

59. Waldburger, C. D., Schildbach, J. F. & Sauer, R. T. (1995). Are buried salt 
bridges important for protein stability and conformational specificity? Nat. 
Struct. Biol. 2, 122-8. 

60. Clark, L. A., Boriack-Sjodin, P. A., Eldredge, J., Fitch, C., Friedman, B., Hanf, 
K. J., Jarpe, M., Liparoto, S. F., Li, Y., Lugovskoy, A., Miller, S., Rushe, M., 
Sherman, W., Simon, K. & Van Vlijmen, H. (2006). Affinity enhancement of 
an in vivo matured therapeutic antibody using structure-based computational 
design. Protein Sci. 15, 949-60. 



References 

 122

61. Shifman, J. M. & Mayo, S. L. (2003). Exploring the origins of binding 
specificity through the computational redesign of calmodulin. Proc. Natl. 
Acad. Sci. USA 100, 13274-9. 

62. Boas, F. E. & Harbury, P. B. (2008). Design of protein-ligand binding based 
on the molecular-mechanics energy model. J. Mol. Biol. In press. 

63. Kuhlman, B. & Baker, D. (2000). Native protein sequences are close to 
optimal for their structures. Proc. Natl. Acad. Sci. USA 97, 10383-8. 

64. Ashworth, J., Havranek, J. J., Duarte, C. M., Sussman, D., Monnat, R. J., Jr., 
Stoddard, B. L. & Baker, D. (2006). Computational redesign of endonuclease 
DNA binding and cleavage specificity. Nature 441, 656-9. 

65. Ambroggio, X. I. & Kuhlman, B. (2006). Computational design of a single 
amino acid sequence that can switch between two distinct protein folds. J. Am. 
Chem. Soc. 128, 1154-61. 

66. Saunders, C. T. & Baker, D. (2005). Recapitulation of protein family 
divergence using flexible backbone protein design. J. Mol. Biol. 346, 631-44. 

67. Snow, C. D., Sorin, E. J., Rhee, Y. M. & Pande, V. S. (2005). How well can 
simulation predict protein folding kinetics and thermodynamics? Annu. Rev. 
Biophys. Biomol. Struct. 34, 43-69. 

68. Ren, P. Y. & Ponder, J. W. (2002). Consistent treatment of inter- and 
intramolecular polarization in molecular mechanics calculations. J. Comput. 
Chem. 23, 1497-1506. 

69. Kuhn, B. & Kollman, P. A. (2000). Binding of a diverse set of ligands to 
avidin and streptavidin: an accurate quantitative prediction of their relative 
affinities by a combination of molecular mechanics and continuum solvent 
models. J Med Chem 43, 3786-91. 

70. Huo, S., Massova, I. & Kollman, P. A. (2002). Computational alanine scanning 
of the 1:1 human growth hormone-receptor complex. J Comput Chem 23, 15-
27. 

71. Mobley, D. L., Graves, A. P., Chodera, J. D., McReynolds, A. C., Shoichet, B. 
K. & Dill, K. A. (2007). Predicting absolute ligand binding free energies to a 
simple model site. J Mol Biol 371, 1118-34. 

72. Wang, J., Kang, X., Kuntz, I. D. & Kollman, P. A. (2005). Hierarchical 
database screenings for HIV-1 reverse transcriptase using a pharmacophore 
model, rigid docking, solvation docking, and MM-PB/SA. J Med Chem 48, 
2432-44. 

73. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., 
Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. 
A. & Cheatham, T. E., 3rd. (2000). Calculating structures and free energies of 
complex molecules: combining molecular mechanics and continuum models. 
Acc Chem Res 33, 889-97. 

74. Snow, C. D., Nguyen, H., Pande, V. S. & Gruebele, M. (2002). Absolute 
comparison of simulated and experimental protein-folding dynamics. Nature 
420, 102-6. 



References 

 123

75. Barth, P., Alber, T. & Harbury, P. B. (2007). Accurate, conformation-
dependent predictions of solvent effects on protein ionization constants. Proc 
Natl Acad Sci U S A 104, 4898-903. 

76. Chakrabarti, R., Klibanov, A. M. & Friesner, R. A. (2005). Computational 
prediction of native protein ligand-binding and enzyme active site sequences. 
Proc Natl Acad Sci U S A 102, 10153-8. 

77. Chakrabarti, R., Klibanov, A. M. & Friesner, R. A. (2005). Sequence 
optimization and designability of enzyme active sites. Proc Natl Acad Sci U S 
A 102, 12035-40. 

78. Boas, F. E. & Harbury, P. B. (2007). Potential energy functions for protein 
design. Curr. Opin. Struct. Biol. 17, 199-204. 

79. Bolon, D. N. & Mayo, S. L. (2001). Enzyme-like proteins by computational 
design. Proc. Natl. Acad. Sci. USA 98, 14274-9. 

80. Zanghellini, A., Jiang, L., Wollacott, A. M., Cheng, G., Meiler, J., Althoff, E. 
A., Rothlisberger, D. & Baker, D. (2006). New algorithms and an in silico 
benchmark for computational enzyme design. Protein Sci 15, 2785-94. 

81. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., 
Halgren, T. A., Sanschagrin, P. C. & Mainz, D. T. (2006). Extra precision 
glide: docking and scoring incorporating a model of hydrophobic enclosure for 
protein-ligand complexes. J Med Chem 49, 6177-96. 

82. Jain, A. N. (2006). Scoring functions for protein-ligand docking. Curr Protein 
Pept Sci 7, 407-20. 

83. Lassila, J. K., Privett, H. K., Allen, B. D. & Mayo, S. L. (2006). Combinatorial 
methods for small-molecule placement in computational enzyme design. Proc 
Natl Acad Sci U S A 103, 16710-5. 

84. Quiocho, F. A. & Ledvina, P. S. (1996). Atomic structure and specificity of 
bacterial periplasmic receptors for active transport and chemotaxis: variation of 
common themes. Mol. Microbiol. 20, 17-25. 

85. Gilson, M. K. & Zhou, H. X. (2007). Calculation of protein-ligand binding 
affinities. Annu Rev Biophys Biomol Struct 36, 21-42. 

86. Declerck, N. & Abelson, J. (1994). Novel substrate specificity engineered in 
the arabinose binding protein. Protein Eng. 7, 997-1004. 

87. Vermersch, P. S., Lemon, D. D., Tesmer, J. J. & Quiocho, F. A. (1991). Sugar-
binding and crystallographic studies of an arabinose-binding protein mutant 
(Met108Leu) that exhibits enhanced affinity and altered specificity. 
Biochemistry 30, 6861-6. 

88. Li, Y., Li, H., Yang, F., Smith-Gill, S. J. & Mariuzza, R. A. (2003). X-ray 
snapshots of the maturation of an antibody response to a protein antigen. Nat. 
Struct. Biol. 10, 482-8. 

89. Fersht, A. (1999). Structure and mechanism in protein science: A guide to 
enzyme catalysis and protein folding, W.H. Freeman and Company, New 
York. 

90. Word, J. M., Richardson, J. S. & Richardson, D. C. (2000). bndlst version 1.6 
(http://kinemage.biochem.duke.edu/). 



References 

 124

91. Lawrence, M. C. & Colman, P. M. (1993). Shape complementarity at 
protein/protein interfaces. J. Mol. Biol. 234, 946-50. 

92. Qiu, D., Shenkin, P. S., Hollinger, F. P. & Still, W. C. (1997). The GB/SA 
continuum model for solvation. A fast analytical method for the calculation of 
approximate Born radii. J. Phys. Chem. A 101, 3005-3014. 

93. Monard, G. & Merz, K. M. (1999). Combined quantum mechanical/molecular 
mechanical methodologies applied to biomolecular systems. Accounts Chem. 
Res. 32, 904-911. 

94. Liu, H., Elstner, M., Kaxiras, E., Frauenheim, T., Hermans, J. & Yang, W. 
(2001). Quantum mechanics simulation of protein dynamics on long timescale. 
Proteins 44, 484-9. 

95. Still, W. C., Tempczyk, A., Hawley, R. C. & Hendrickson, T. (1990). 
Semianalytical Treatment of Solvation for Molecular Mechanics and 
Dynamics. J. Am. Chem. Soc. 112, 6127-6129. 

96. Lim, C., Bashford, D. & Karplus, M. (1991). Absolute pKa Calculations with 
Continuum Dielectric Methods. J. Phys. Chem. 95, 5610-5620. 

97. Nocedal, J. & Wright, S. J. (1999). Numerical Optimization. Springer series in 
operations research, Springer, New York. 

98. Ponder, J. W. (2004). TINKER version 4.2 (http://dasher.wustl.edu/tinker/). 
99. Slovic, A. M., Kono, H., Lear, J. D., Saven, J. G. & DeGrado, W. F. (2004). 

Computational design of water-soluble analogues of the potassium channel 
KcsA. Proc. Natl. Acad. Sci. USA 101, 1828-33. 

100. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-
Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, 
R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & 
NMR system: A new software suite for macromolecular structure 
determination. Acta Crystallographica Section D-Biological Crystallography 
54, 905-921. 

101. Kunkel, T. A., Bebenek, K. & McClary, J. (1991). Efficient site-directed 
mutagenesis using uracil-containing DNA. Methods Enzymol. 204, 125-39. 

102. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. (1995). How to 
measure and predict the molar absorption coefficient of a protein. Protein Sci. 
4, 2411-23. 

103. Leach, A. R. (2001). Molecular Modelling : Pinciples and Applications. 2nd 
edit, Prentice Hall, Harlow, England ; New York. 

104. Srinivasan, J., Trevathan, M. W., Beroza, P. & Case, D. A. (1999). Application 
of a pairwise generalized Born model to proteins and nucleic acids: inclusion 
of salt effects. Theoretical Chemistry Accounts 101, 426-434. 

105. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1996). 
Numerical Recipes in C: The Art of Scientific Computing. 2nd edit, Cambridge 
University Press, Cambridge; New York. 

106. Lide, D. R. (2000). CRC Handbook of Chemistry and Physics. 81st edit, CRC 
Press, Boca Raton; New York; Washington D.C. 

107. Creighton, T. E. (1993). Proteins: Structures and Molecular Properties. 2nd 
edit, W.H. Freeman and Company, New York. 



References 

 125

108. Word, J. M., Lovell, S. C., Richardson, J. S. & Richardson, D. C. (1999). 
Asparagine and glutamine: using hydrogen atom contacts in the choice of side-
chain amide orientation. J. Mol. Biol. 285, 1735-47. 

109. McDonald, I. K. & Thornton, J. M. (1994). Satisfying hydrogen bonding 
potential in proteins. J Mol Biol 238, 777-93. 

110. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C. & 
Vakser, I. A. (1992). Molecular-Surface Recognition: Determination of 
Geometric Fit between Proteins and Their Ligands by Correlation Techniques. 
Proc. Natl. Acad. Sci. USA 89, 2195-2199. 

111. Desmet, J., Demaeyer, M., Hazes, B. & Lasters, I. (1992). The Dead-End 
Elimination Theorem and Its Use in Protein Side-Chain Positioning. Nature 
356, 539-542. 

112. Desmet, J., Spriet, J. & Lasters, I. (2002). Fast and accurate side-chain 
topology and energy refinement (FASTER) as a new method for protein 
structure optimization. Proteins 48, 31-43. 

113. Hu, X. & Kuhlman, B. (2006). Protein design simulations suggest that side-
chain conformational entropy is not a strong determinant of amino acid 
environmental preferences. Proteins 62, 739-48. 

114. Lin, H. & Cornish, V. W. (2002). Screening and selection methods for large-
scale analysis of protein function. Angew. Chem. Int. Ed. Engl. 41, 4402-25. 

115. Mowbray, S. L. & Cole, L. B. (1992). 1.7 A X-ray structure of the periplasmic 
ribose receptor from Escherichia coli. J. Mol. Biol. 225, 155-75. 

116. Bjorkman, A. J. & Mowbray, S. L. (1998). Multiple open forms of ribose-
binding protein trace the path of its conformational change. J. Mol. Biol. 279, 
651-64. 

117. Berthod, H., Giessner*, C. & Pullman, A. (1967). Sur les roles respectifs des 
electrons sigma et pi dans les proprietes des derives halogenes des molecules 
conjuguees: Application a letude de luracile et du fluorouracile. Theoretica 
Chimica Acta 8, 212-&. 

118. Matthew Clark, R. D. C. I. I. I. N. V. O. (1989). Validation of the general 
purpose tripos 5.2 force field. Journal of Computational Chemistry 10, 982-
1012. 

119. Loudon, G. M. (1995). Organic Chemistry. 3rd edit. 
120. Matsuo, K. & Gekko, K. (2004). Vacuum-ultraviolet circular dichroism study 

of saccharides by synchrotron radiation spectrophotometry. Carbohydr Res 
339, 591-7. 

121. Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the 
hydropathic character of a protein. J. Mol. Biol. 157, 105-32. 

122. Hunter, C. A., Singh, J. & Thornton, J. M. (1991). Pi-pi interactions: the 
geometry and energetics of phenylalanine-phenylalanine interactions in 
proteins. J. Mol. Biol. 218, 837-46. 

123. Cadwell, R. C. & Joyce, G. F. (1992). Randomization of genes by PCR 
mutagenesis. PCR methods and applications 2, 28-33. 



References 

 126

124. Zhao, H., Giver, L., Shao, Z., Affholter, J. A. & Arnold, F. H. (1998). 
Molecular evolution by staggered extension process (StEP) in vitro 
recombination. Nature biotechnology 16, 258-61. 

125. Cadwell, R. C. & Joyce, G. F. (1992). Randomization of genes by PCR 
mutagenesis. PCR Methods Appl. 2, 28-33. 

126. Morozov, A. V., Kortemme, T., Tsemekhman, K. & Baker, D. (2004). Close 
agreement between the orientation dependence of hydrogen bonds observed in 
protein structures and quantum mechanical calculations. Proc. Natl. Acad. Sci. 
USA 101, 6946-51. 

127. Lockless, S. W. & Ranganathan, R. (1999). Evolutionarily conserved pathways 
of energetic connectivity in protein families. Science 286, 295-9. 

128. Desmyter, A., Transue, T. R., Ghahroudi, M. A., Thi, M. H., Poortmans, F., 
Hamers, R., Muyldermans, S. & Wyns, L. (1996). Crystal structure of a camel 
single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. 
Biol. 3, 803-11. 

129. Fersht, A. (1999). Structure and Mechanism in Protein Science: A Guide to 
Enzyme Catalysis and Protein Folding, W.H. Freeman, New York. 

130. Morii, T., Sugimoto, K., Makino, K., Otsuka, M., Imoto, K. & Mori, Y. 
(2002). A new fluorescent biosensor for inositol trisphosphate. J. Am. Chem. 
Soc. 124, 1138-9. 

131. Fehr, M., Frommer, W. B. & Lalonde, S. (2002). Visualization of maltose 
uptake in living yeast cells by fluorescent nanosensors. Proc. Natl. Acad. Sci. 
USA 99, 9846-51. 

132. Miyawaki, A. & Tsien, R. Y. (2000). Monitoring protein conformations and 
interactions by fluorescence resonance energy transfer between mutants of 
green fluorescent protein. Methods Enzymol. 327, 472-500. 

133. Muddana, S. S. & Peterson, B. R. (2003). Fluorescent cellular sensors of 
steroid receptor ligands. Chembiochem 4, 848-55. 

134. Bacskai, B. J., Hochner, B., Mahaut-Smith, M., Adams, S. R., Kaang, B. K., 
Kandel, E. R. & Tsien, R. Y. (1993). Spatially resolved dynamics of cAMP 
and protein kinase A subunits in Aplysia sensory neurons. Science 260, 222-6. 

135. Villaverde, A. (2003). Allosteric enzymes as biosensors for molecular 
diagnosis. FEBS Letters 554, 169-172. 

136. Ha, J. H., Butler, J. S., Mitrea, D. M. & Loh, S. N. (2006). Modular enzyme 
design: Regulation by mutually exclusive protein folding. Journal of 
Molecular Biology 357, 1058-1062. 

137. Carter, P. & Wells, J. A. (1988). Dissecting the catalytic triad of a serine 
protease. Nature 332, 564-8. 

138. Kwong, P. D., Doyle, M. L., Casper, D. J., Cicala, C., Leavitt, S. A., Majeed, 
S., Steenbeke, T. D., Venturi, M., Chaiken, I., Fung, M., Katinger, H., Parren, 
P. W., Robinson, J., Van Ryk, D., Wang, L., Burton, D. R., Freire, E., Wyatt, 
R., Sodroski, J., Hendrickson, W. A. & Arthos, J. (2002). HIV-1 evades 
antibody-mediated neutralization through conformational masking of receptor-
binding sites. Nature 420, 678-82. 



References 

 127

139. Jespers, L., Schon, O., Famm, K. & Winter, G. (2004). Aggregation-resistant 
domain antibodies selected on phage by heat denaturation. Nat. Biotechnol. 22, 
1161-5. 

140. Silverman, J., Liu, Q., Bakker, A., To, W., Duguay, A., Alba, B. M., Smith, R., 
Rivas, A., Li, P., Le, H., Whitehorn, E., Moore, K. W., Swimmer, C., Perlroth, 
V., Vogt, M., Kolkman, J. & Stemmer, W. P. (2005). Multivalent avimer 
proteins evolved by exon shuffling of a family of human receptor domains. 
Nat. Biotechnol. 23, 1556-61. 

141. Binz, H. K., Amstutz, P. & Pluckthun, A. (2005). Engineering novel binding 
proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257-68. 

142. Binz, H. K. & Pluckthun, A. (2005). Engineered proteins as specific binding 
reagents. Curr. Opin. Biotechnol. 16, 459-69. 

143. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. 
(2004). Prediction of sequence-dependent and mutational effects on the 
aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302-6. 

144. Brusic, V., Rudy, G. & Harrison, L. C. (1998). MHCPEP, a database of MHC-
binding peptides: update 1997. Nucleic Acids Res. 26, 368-71. 

145. Kolaskar, A. S. & Tongaonkar, P. C. (1990). A semi-empirical method for 
prediction of antigenic determinants on protein antigens. FEBS Lett. 276, 172-
4. 

 
 


