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Summary 

While the molecular-mechanics field has standardized on a few potential energy functions, 

computational protein design efforts are based on potentials that are unique to individual labs.  

Here we show that a standard molecular-mechanics potential energy function without any 

modifications can be used to engineer protein-ligand binding.  A molecular-mechanics potential 

is used to reconstruct the coordinates of various binding sites with an average root mean square 

error of 0.61 Å, and to reproduce known ligand-induced side-chain conformational shifts.  

Within a series of 34 mutants, the calculation can always distinguish weak (Kd > 1 mM) and tight 

(Kd < 10 μM) binding sequences.  Starting from partial coordinates of the ribose binding protein 

lacking the ligand and the ten primary contact residues, the molecular-mechanics potential is 

used to redesign a ribose binding site.  Out of a search space of 2×1012 sequences, the calculation 

selects a point mutant of the native protein as the top solution (experimental Kd = 17 μM), and 

the native protein as the second best solution (experimental Kd = 210 nM).  The quality of the 

predictions depends on the accuracy of the generalized Born electrostatics model, treatment of 

protonation equilibria, high resolution rotamer sampling, a final local energy minimization step, 

and explicit modeling of the bound, unbound, and unfolded states.  The application of 

unmodified molecular-mechanics potentials to protein design links two fields in a mutually 

beneficial way.  Design provides a new avenue to test molecular-mechanics energy functions, 

and future improvements in these energy functions will presumably lead to more accurate design 

results. 

 

Keywords 

protein design; generalized Born; force field; dissociation constant; structure prediction 



 3

 

Introduction 

 

 Computer-aided design of a ligand binding site is similar to solving a 3D jigsaw puzzle: it 

involves fitting together the right pieces (amino acid mutations) to create a properly shaped and 

functionalized pocket for a ligand.  The inputs to the design procedure are the crystal structure of 

a scaffold protein, a ligand structure, and a set of amino-acid positions that will be mutated to 

create the binding site.  The orientations of candidate jigsaw-puzzle pieces are determined by 

modeling the conformations that the ligand and surrounding amino acids can adopt, so as to 

identify the lowest energy arrangement.  The design procedure searches through thousands of 

candidate sequences for one that optimizes the computed binding free energy of the ligand with 

the protein. The whole process depends heavily on the potential energy function (PEF), a 

mathematical expression embodying the physical laws that govern the protein-ligand and solvent 

system. 

 Over the past 30 years, potential energy functions have played a central role in the 

molecular-mechanics field.  This field has converged on a small set of standard PEF’s that have 

been extensively tested.1  Identifying and correcting the limitations of these energy models is an 

area of active research.2-4  The modern molecular-mechanics potential energy functions (MM-

PEF’s) treat proteins as a collection of atoms with partial charges and van der Waals parameters, 

connected by springs that maintain bond lengths and angles.  The parameters are derived from 

quantum calculations and from experimental data on a wide range of systems.5  MM-PEF’s have 

been used to calculate binding constants6-10, protein folding kinetics11, protonation equilibria12, 

and active site coordinates8,13,14. 
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 Perhaps surprisingly, standard MM-PEF’s are not used for protein design.15  The reason 

is that computing energies using MM-PEF’s requires significant computer time and is very 

sensitive to detailed atom positions, necessitating fine conformational sampling.  When 

thousands of different sequences must be evaluated, the computation time per sequence becomes 

critical.  In order to accelerate calculations, design algorithms typically use simplified PEFs with 

various ad hoc energy terms13,16-28 (heuristic potential energy functions are also often used to 

predict binding constants29,30 and to predict active site coordinates31).  Water is treated in a 

simplified way, for example by inserting a distance dependent dielectric constant into Coulomb’s 

law, and by applying a surface-area based solvation energy.16,17  The van der Waals interaction is 

frequently smoothed so that it is less sensitive to spatial position, and thus can be optimized with 

coarse sampling.16-18  Rather than explicitly modeling reference states, such as the unfolded state, 

the reference states are typically treated implicitly by modifying the PEF.16-18  Statistical terms 

derived by counting how frequently different residues and functional groups interact in crystal 

structures, are included as well.16-18  Relative weights for the various energy terms are adjusted 

empirically so as to match experimental data.18,19  Similar approximations were used in the early 

days of molecular-mechanics calculations, but were replaced as better models and increased 

computational power became available. 

 There are several motivations for trying to identify a single, standardized energy function 

that is practically useful for protein design.  First, design results from different labs could be 

compared, and those results would collectively address where the energy model had failed and 

how to improve it.  Second, the practice of computational protein design would be simplified if 

PEF development were not required.  Finally, a PEF that had been broadly validated might be 

expected to generalize better to new design problems than would a customized PEF. 
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 One reasonable choice for a universal energy function would be an MM-PEF.  MM-

PEF’s are the most broadly tested PEF’s,1 and a direct correspondence exists between them and 

more rigorous quantum-mechanical treatments of matter.5  A large group of scientists work on 

MM-PEF’s, and the advances they make would be directly applicable to design.  Here, we test 

whether protein-ligand binding sites can be successfully designed based on a standard MM-PEF 

that does not include any heuristic corrections.  We first describe how we directly apply an 

MM-PEF to the protein design problem, and then detail various tests applied to the ribose 

binding protein. 

 

Results 

 

Design scheme 

 Using the genetic algorithm,32 we search through thousands of sequences to find one 

sequence that maximizes the calculated protein-ligand dissociation energy without destabilizing 

the protein by more than 5 kcal/mol.  To evaluate dissociation and unfolding energies, the bound, 

unbound, and unfolded states are modeled, and their calculated energies are differenced.  For 

each state, we use a mean field rotamer-repacking algorithm to find the atomic coordinates that 

minimize the energy.  As part of the rotamer repacking, titratable residues are allowed to 

protonate or deprotonate depending on the local energetics. Good structural sampling is achieved 

by using extremely large rotamer libraries (≥ 5449 rotamers per position), and several thousand 

ligand poses that sample the translational, rotational, and internal degrees of freedom of the 

ligand.  The optimal structure generated by rotamer repacking is then subjected to gradient-based 

energy minimization.  The energies of each state are evaluated with the unmodified 
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CHARMM22  molecular-mechanics potential energy function33 and the generalized Born 

solvation formalism34 developed by Lee et al.35  The design procedure is outlined in Figure 1.  

To evaluate the approach, we apply three tests: structural prediction, energetic prediction, and 

prediction of a binding site sequence. 

 

Structural prediction 

 For structural predictions, we started with crystal structures and discarded the coordinates 

of the ligand and all contacting side chains.  These coordinates were then predicted in the context 

of the rest of the protein.  We first explored the effect of sampling resolution by predicting the 

structure of ribose binding protein (RBP) bound to ribose using four rotamer libraries of 

increasing size (Figure 2).  With fewer than 5449 rotamers per position, the calculated energy of 

the predicted structure is less favorable than the calculated energy of the crystal structure, 

indicating that the crystal structure conformation is missed due to inadequate sampling 

resolution.  At 5449 rotamers per position, the predicted structure has the same energy as the 

energy-minimized crystal structure, and the coordinates differ by a root mean square (RMS) 

error of 0.148 Å.  This level of accuracy exceeds the experimental error in the crystallographic 

coordinates.  This apparently surprising result likely occurs because the fixed portion of the 

crystallographic coordinates constrains the possible solutions at the modeled positions.  

However, this constraint alone is not sufficient to specify the binding site sequence and geometry 

(see below). 

 Using high resolution rotamer libraries (either 5449 or 6028 rotamers per position), side 

chains in the binding sites of 5 different structures were predicted with an average RMS error of 
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0.61 Å (Figures 3-4).  The number of predicted residues ranged from 9 to 23.  The error was 

generally larger for surface residues, and when more positions were predicted. 

 For the RBP-ribose calculations, we restricted the ligand poses to be within 1.8 Å RMS 

of the native pose, resulting in the 4639 poses shown in Figure 3.  For the ABP-arabinose 

calculations, the ligand poses were restricted to be within 1.0 Å RMS of the native pose, 

resulting in the 4111 poses shown in Figure 3.  Although we would have preferred to do the 

calculations without this filter, it was necessary to reduce the number of ligand poses to a 

manageable number (the precalculated interaction energy matrices had to be smaller than 2 GB 

to fit into memory). 

 We explicitly model the bound and unbound states, providing predictions of side-chain 

conformational shifts upon binding.  The predicted changes match the crystal structures in 70% 

of the residues with the largest conformational shifts (Figure 5).  Single-state design algorithms 

ignore such conformational shifts, in contrast to a multi-state design framework.22  Note that we 

did not predict the backbone shift upon binding (4.1 Å RMS for RBP and 0.8 Å RMS for VEGF) 

because the bound and unbound backbone coordinates were used as inputs to the calculation. 

 The calculation predicts that one aspartic acid and one glutamic acid in the binding site of 

ABP are protonated (Supporting Table 5).  If these residues are not allowed to protonate, the 

structural prediction is degraded (Supporting Figure 7). 

 

Energetic prediction 

 To test if the energy function can properly rank the binding affinities of different binding 

site sequences, we first computed ligand binding energies for the native ABP and RBP sequences 
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and for 1000 scrambled sequences.  As expected, none of the scrambled sequences have better 

predicted stability and dissociation energy than the native (Figure 6a). 

 Next, we calculated the relative binding energies of 34 mutants of ABP for which 

dissociation energies have been measured.  Two sequences were predicted to destabilize the 

protein by more than 10 kcal/mol relative to native ABP, and presumably adopt alternative 

backbone conformations.  The binding energies of the remaining sequences are predicted with a 

correlation coefficient of r2=0.57 (Figure 6b, Supporting Table 6).  The predictions were 

performed without any adjustable parameters.  As each calculation required about 1 minute of 

CPU time on a Pentium processor, the approach is fast enough for design applications.  The data 

set includes single, double, and triple point mutants of wild type ABP, and covers a wide range 

of mutation types (hydrophobic to hydrophobic, hydrophobic to polar/charged, polar/charged to 

hydrophobic, and polar/charged to polar/charged). 

 Within the data set, the calculation can always distinguish weak (Kd > 1 mM) and tight 

(Kd < 10 μM) binding sequences.  However, the absolute dissociation energies are not predicted 

correctly.  One important possible source of error is that there is no published crystal structure of 

unbound ABP.  We model the unbound protein backbone conformation based on the crystal 

structure of bound ABP.  In reality, the unbound protein likely exists in an open conformation 

with better solvated binding-site residues.36  Our incorrect unbound state might explain the 21.2 

kcal/mol offset in calculated dissociation energies.  The slope of the regression line is greater 

than one, which is likely due to modes of structural relaxation (such as backbone motions) that 

were not modeled.  The resulting clashes will exaggerate any energy differences between 

sequences.  Another possibility is that we are not adequately modeling entropy losses upon 

binding.37 
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Binding site design 

 The final and most stringent test of the molecular mechanics energy model was a 

redesign of the binding site in RBP (Figure 7).  We discarded the ligand coordinates, and the 

sequence and coordinates of the 10 residues contacting the ligand.  The total size of the sequence 

space searched was 1710 = 2.0 × 1012 (Gly, Pro, and Cys were not allowed).  The calculation was 

initiated from a population of random sequences.  After evaluation of 8888 sequences, the energy 

function identified a point mutant (N13L) of native RBP as the tightest binding sequence.  After 

8964 sequences, it picked native RBP as the second tightest binding sequence.  Evaluation of an 

additional 8879 sequences did not yield any further improvement.  The entire process was 

repeated with a different random initial sequence population, and the same optimal sequences 

were selected. During the course of the design, first stability was achieved, then hydrogen 

bonding, and finally shape complementarity.  The same pattern has been seen experimentally in 

the affinity maturation of antibodies against lysozyme.38 

 We experimentally tested the three top sequences from four different RBP-ribose 

redesign calculations to determine which aspects of the design algorithm were essential (Table 

1).  Decreasing the rotamer resolution (row a), omitting the final continuous minimization step 

(row b), or using a less accurate electrostatics model (row c) produces sequences that bind very 

weakly.  Only when we use a high resolution rotamer library, a final continuous minimization 

step, and accurate electrostatics, does the design algorithm predict sequences that bind well (row 

d). 
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Discussion 

 

 This paper reports the first successful redesign of an entire binding site based on an 

unmodified molecular-mechanics potential energy function.  This is a stringent test of the energy 

function, because the native sequence and a point mutant are distinguished from 2.0 × 1012 

alternative sequences.  Good hydrogen bonds and steric complementarity were picked out 

directly by the energy function, without energy terms or selection criteria that specifically 

required these features.  Given that the underlying physics is the same for the design of new 

proteins and for the simulation of known proteins, it is satisfying to see that the same energy 

models can be used as well. 

 We tested a number of simplifications commonly used in protein design calculations, and 

found that they all resulted in less successful predictions.  For example, low sampling resolution 

or an inaccurate solvation model led to sequences that lacked critical hydrogen bonds.  Scaling 

down the electrostatic energy (which is frequently done to compensate for a crude electrostatics 

model) reduced the accuracy of the energetic predictions.  Eliminating the unfolded state resulted 

in unstable designed proteins.  Softening the van der Waals interaction allowed atoms to pack 

together more closely, making hydrogen bonds and salt bridges appear artificially strong 

(Supporting Figure 8), and resulting in the burial of charged and polar functional groups. 

 An important conclusion from this work is that MM-PEF’s must be paired with an 

accurate continuum solvent model and with protonation equilibria in order to correctly redesign a 

polar binding site.  Individual polar protein-ligand interactions can exhibit energies up to 100 

kcal/mol (the Coulomb energy between unit charges separated by 3.3 Å).  These energies are 

almost exactly counterbalanced by interactions with water in the unbound protein.  Thus, small 
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errors in the solvation energy grossly alter the design predictions.  Finite difference algorithms 

are generally considered the most accurate methods to solve the Poisson-Boltzmann differential 

equation that defines the continuum solvent model, but they are currently too slow for protein 

design.  Very accurate generalized Born approaches have been developed over the last few 

years,35 and produce solvation energies that differ from the finite difference result by only 2% 

(Supporting information).  We have shown that this level of accuracy is both necessary and 

sufficient for protein design calculations. 

 The results in this paper suggest that the protein design and molecular-mechanics fields 

can work together on the same potential energy functions, and that future developments in MM-

PEFs will be immediately applicable to protein design (although ad hoc terms may still be 

necessary for modeling aggregated and misfolded states).  Currently, there are active efforts to 

develop polarizable potential energy functions that more accurately reproduce the physical 

characteristics of small molecules,2-4 and hybrid quantum mechanical / molecular mechanical 

potential energy functions that model charge transfer and changes in covalent bonding.39,40  It 

will be exciting to see how these improved energy models will impact the protein design 

problem. 

 

Materials and methods 

 

Calculations 

 Protein structures were predicted using a rotamer-based mean field algorithm.41  The 

energy was calculated as the sum of the CHARMM22 molecular-mechanics energy,33 a 

generalized Born surface-area solvation energy34,35 using a microscopic surface tension42 of 
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0.0072 kcal/mol/Å2, and a deprotonation energy.43  The most probable mean field structure was 

then locally minimized using the L-BFGS optimization algorithm44 in TINKER45 to obtain a 

final structure and energy.  The unfolded protein energy was calculated by assuming that the 

protein backbone adopts an ensemble of random walk conformations in water (see 46,47 and 

Supporting Information)  The stability of the protein was calculated as the energy difference 

between the unfolded protein and the folded unbound protein, and the dissociation energy was 

calculated as the energy difference between the uncomplexed and the complexed protein-ligand 

system.  All calculations were performed at 25°C, pH 7.0, 100 mM monovalent salt.  Ribose 

binding proteins were designed using a genetic algorithm32 that optimized the calculated ribose 

dissociation energy, given a 5 kcal/mol limit on protein destabilization.  The genetic algorithm 

was initialized with a population of random sequences. Calculations were performed using 

CNSsolve48, TINKER45, and custom code written in C++, and run on a Pentium-based Linux 

cluster. 

 

Protein purification and constructs 

RBP without a periplasmic signal peptide was cloned into the NcoI/XhoI sites of pET28a (EMD 

Biosciences), generating a derivative with a C-terminal His6 tag.  Mutants were made by Kunkel 

mutagenesis49 or by QuikChange (Stratagene).  Protein was expressed in BL21 DE3 E. coli cells 

(Novagen) with 1 mM IPTG for 5 hr at 37°C.  Cells were lysed with lysozyme and sonication in 

the presence of 1 mM phenylmethylsulfonyl fluoride.  Protein was purified by immobilized 

metal affinity chromatography, followed by gel filtration chromatography in 20 mM potassium 

phosphate pH 7.0, 100 mM NaCl.  The purified protein was then concentrated, and its final 

concentration determined by absorbance.50 
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Centrifugal concentrator radioligand binding assay 

Proteins were diluted into 1 ml of 20 mM potassium phosphate pH 7.0, 100 mM NaCl, and 0.5 

μCi 1-3H(N)-D-ribose (Moravek).  After equilibration for 30 minutes, the samples were placed in 

centrifugal concentrators (Amicon Ultra, 5 kDa MWCO), and centrifuged until at least 500 μl of 

filtrate had crossed the membrane.  Any filtrate in excess of 500 μl was returned to the retentate, 

and the quantity of radioligand in the filtrate and retentate were measured by scintillation 

counting.  Dissociation constants were calculated as 2 2
1 1d

P LK
r r

= −
− +

, where r is the ratio of 

retentate to filtrate radioligand, P is the initial protein concentration, and L is the initial 

radioligand concentration.  We chose conditions where P > Kd and r fell between 1.2 and 20.  

The analysis depends on the assumption that water and the ligand cross the membrane at equal 

rates.  This assumption was tested by centrifuging a ribose solution across the membrane in the 

absence of protein; the specific activities of the retentate and filtrate were identical to within 4%. 

 

Solid phase radioligand binding assay 

A solid phase radioligand binding assay was used to detect binding with Kd’s in the high 

millimolar range.  Nickel-NTA agarose slurry (Qiagen) was washed and resuspended in buffer 

(20 mM potassium phosphate pH 7.0 and 100 mM NaCl) to form a 50% (v/v) slurry.  Twenty 

microliters of the slurry were mixed with 5 nmol of His6-tagged protein and 1.0 μCi of 

radioligand in a final buffer volume of 50 μl.  Following a 30 minute equilibration, the mixture 

was transferred to 0.45 μm centrifugal filter units (Millipore #UFC30HV0S) and centrifuged at 

12000×g for 2 minutes to remove unbound ligand.  The resin was washed three times by addition 

of 500 μl of 50 % ethanol and centrifugation at 12000×g for 2 minutes.  The bound ligand was 
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eluted with 250 μl guanidinium HCl, and quantified by scintillation counting.  Radioligand 

eluted from a no-protein control was included to account for non-specific binding to the resin, 

and a control of 0.5 μCi radioligand was used to determine counting efficiency.  Dissociation 

constants were calculated as 
2

d
L Lr Pr PrK

r
− − +

= , where r is the fraction of protein bound to 

radioligand, P is the initial protein concentration, and L is the initial ligand concentration. 
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Figure captions 

 

Figure 1.  Simplified schematic of the protein design algorithm.  (a) Setting up a design 

calculation.  The design calculation is based on a scaffold protein (gray) with a known crystal 

structure, and a set of design positions (red).  Possible ligand poses (green) and side chain 

conformations (blue) for each amino acid at each position are constructed.  The right panel 

shows multiple side chain rotamers modeled at one design position, and two alternative ligand 

poses.  Interaction energies between the possible ligand poses and the possible side chain 
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conformations are precomputed.  (b) Running a design calculation.  The design procedure 

involves separate sequence optimization (to find sequences that bind ribose) and structural 

optimization (to determine the binding constant and stability of each sequence).  In the RBP-

ribose redesign, we search a space of 2×1012 sequences and an average of 5×1028 conformations 

per sequence. 

 

Figure 2.  Higher rotamer resolution improves structural predictions for the RBP binding site 

(PDB code: 2DRI).  Δ Energy is the difference in potential energy between the calculated 

structure and the crystal structure, after both have been subjected to local energy minimization.  

RMS error is the root-mean-square deviation between the calculated and crystallographic 

coordinates of the repacked atoms, comprising the ligand and ten active site side chains.  The 

phenylalanine rotamers from each rotamer library are shown to illustrate the sampling resolution.  

The lowest resolution rotamer library shown is the Richardson penultimate rotamer library51 with 

protonation states added for His, Asp, and Glu.  The other rotamer libraries were derived by 

clustering side chain conformations in high resolution crystal structures from the Protein Data 

Bank (see Supporting Information). 

 

Figure 3.  Prediction of binding site coordinates.  Starting from crystal structures stripped of the 

ligand and the contacting residues, the active site was reconstructed by finding the lowest energy 

arrangement of the ligand and side chains.  For ABP-arabinose (PBD code: 6ABP), the 

coordinates of the arabinose and 15 contacting residues (10, 14, 16, 17, 64, 89, 90, 108, 145, 147, 

151, 204, 205, 232, 259) were predicted using 6028 rotamers per position and 4111 ligand poses.  

For RBP-ribose (PDB code: 2DRI), the coordinates of ribose and 10 contacting residues (13, 15, 
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16, 89, 90, 141, 164, 190, 215, 235) were predicted using 5449 rotamers per position, and 4639 

ligand poses. 

 

Figure 4.  Prediction of binding site coordinates for bevacizumab-VEGF (1BJ1), unbound 

VEGF (2VPF), and unbound RBP (1URP).  For bevacizumab-VEGF, the following 23 residues 

were repacked, using 6028 rotamers per position: V17, V21, W48, W79, W81, W82, W83, W91, 

W93, H28, H30, H31, H32, H54, H55, H99, H101, H102, H103, H105, H106, H107, H108.  V 

and W are VEGF chains, H and L are antibody heavy and light chains.  For unbound VEGF and 

RBP, the same set of residues were predicted as the bound structure. 

 

Figure 5.  Prediction of side chain conformational shifts in RBP upon binding ribose, or VEGF 

upon binding bevacizumab.  The five largest experimentally observed conformational shifts are 

shown for each protein.  The residues were superimposed by aligning the backbone amide 

nitrogen, alpha carbon, and carbonyl carbon.  * denotes correct predictions, where the 

unbound/bound predictions are closest to the unbound/bound crystallographic coordinates, 

respectively. 

 

Figure 6.  Predicting dissociation energies.  (a)  Calculated stability and dissociation energy 

distinguish the native sequence (×) from 1000 scrambled sequences (♦) for ABP and RBP.  

Sequences predicted to be more then 10 kcal/mol destabilized relative to the native are shown in 

gray.  (b)  Predicting relative dissociation energies of mutants.  The graph shows data on mutants 

of ABP binding to arabinose.  Experimental data are from reference 52 and from measurements 

reported in Supporting Table 6.  An experimental dissociation energy of zero means that there 
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was no detectable binding.  Calculations were performed using 6ABP as the scaffold structure 

for both the bound and unbound states, with 6028 rotamers per position.  Coordinates of the 

fifteen primary ligand contacts and of residues 20 and 235 were optimized.  The circled points 

are predicted to be destabilized by more than 10 kcal/mol relative to the native. 

 

Figure 7.  Redesigning the ribose binding site in RBP.  Positions identical to the native are 

highlighted in yellow.  The figure shows the best sequence as a function of the number of 

sequences considered, using either the mean field dissociation energy as the criterion (blue 

trajectories) or alternatively the dissociation energy calculated using minimized structures (red 

trajectories).  All sequences with a mean field dissociation energy greater than 30 kcal/mol 

(corresponding to -7.5 kcal/mol relative to the native sequence, dashed line) were locally energy 

minimized to generate the red trajectory.  Sequence 8871 is the top sequence when ranked by 

mean field dissociation energy (corresponding to Table 1b), and sequence 8888 is the top 

sequence when ranked by minimized dissociation energy (corresponding to Table 1d).  The 

native sequence was found out of a possible 2×1012 sequences after 8964 sequence evaluations.  

Dissociation and unfolding energies are reported in kcal/mol, relative to the native sequence.  

The number of protein-ligand hydrogen bonds was determined using bndlst.53  Shape 

complementarity (which ranges from 0 for perfectly non-complementary surfaces to 1 for 

perfectly complementary surfaces) was calculated using sc.54  Backbone coordinates for the 

bound state are from 2DRI, and backbone coordinates for the unbound state are from 1URP. 

 

Table 1.  High resolution rotamer library, gradient-based local minimization, and an accurate 

solvation model are required to successfully redesign the ribose binding site in RBP.  Multiple 
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design calculations (a–d) were performed using different sampling resolutions and solvent 

models.  The top three sequences from each calculation and their experimentally measured 

binding constants are shown.  Parts of the sequence identical to the native sequence are 

highlighted in yellow.  (a) Design calculation using a lower resolution rotamer library.  (b) 

Design calculation without a gradient-based local minimization step.  (c) Design calculation 

using a less accurate generalized Born solvent treatment.55  (d) Design calculation using a high 

resolution rotamer library, gradient-based local minimization, and an accurate generalized Born 

solvation model.35   Sequences are ranked by calculated dissociation energy, allowing 5 kcal/mol 

destabilization relative to the native sequence for 5449 rotamers / position, and 20 kcal/mol 

destabilization for 2800 rotamers / position.  The native sequence was not within the top 100 

sequences for design calculations A, B, or C.  * Kd measured using the solid phase radioligand 

binding assay.  † Kd measured using the centrifugal concentrator assay.  The reported error is the 

standard deviation of 3 measurements. 
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