
Potential energy functions for protein design
F Edward Boas and Pehr B Harbury
Different potential energy functions have predominated in

protein dynamics simulations, protein design calculations, and

protein structure prediction. Clearly, the same physics applies

in all three cases. The differences in potential energy functions

reflect differences in how the calculations are performed. With

improvements in computer power and algorithms, the same

potential energy function should be applicable to all three

problems. In this review, we examine energy functions currently

used for protein design, and look to the molecular

mechanics field for advances that could be used in the next

generation of design algorithms. In particular, we focus on

improved models of the hydrophobic effect, polarization and

hydrogen bonding.
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Introduction
Computational protein design algorithms use models of

protein energetics to engineer protein sequences with

new functions. This is similar to more established

branches of engineering, such as circuit simulation or

stability analysis of buildings, whereby accurate computer

models are used to evaluate designs before they are built.

Protein design provides a rigorous test of the energetic

model that is used, because the design algorithm must

pick functional sequences out of an astronomically large

space of non-functional sequences.

As with any calculation, there is a trade-off between

accuracy and speed when modeling or designing

proteins. For example, simulation of a one-second dis-

sociation event using a molecular dynamics calculation

with explicit water would take ten million years on a

typical desktop computer. Protein design algorithms use

several strategies to speed up the modeling process. First,

protein design algorithms do not simulate kinetics;
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instead they calculate the energies of a small number

of target states (these energies are used as a surrogate for

the free energies of conformational neighborhoods).

Many fast algorithms exist for optimizing the structure

of each target state. Second, protein design calculations

do not explicitly model water; instead they use a

continuum representation of water. Finally, protein

design algorithms generally use less computationally

intensive energy functions than molecular mechanics

calculations do.

Previous reviews have described potential energy func-

tions (PEFs) used for molecular mechanics simulations

[1,2], protein design [3,4] and protein structure prediction

[5]. In this review, we compare these energy functions

(Figure 1).

Potential energy functions
Overview

Molecular mechanics potential energy functions (MM-

PEFs) incorporate both ‘bonded’ and ‘non-bonded’ terms

(Figure 2). The bonded terms apply to sets of two to four

atoms that are covalently linked, and they serve to con-

strain bond lengths and angles near their equilibrium

values. The bonded terms also include a torsional poten-

tial that models the periodic energy barriers encountered

during bond rotation. The non-bonded terms consist of

the Lennard–Jones (LJ) function (which includes van der

Waals attraction and repulsion owing to orbital overlap)

and Coulomb’s law. The parameters for the bonded and

non-bonded terms of an MM-PEF are derived from

quantum calculations and from thermodynamic, crystal-

lographic and spectroscopic data on a wide range of

systems [1,2]. MM-PEFs have been used predominately

to simulate protein folding and dynamics, but are also

used to refine X-ray crystal structures.

An alternative type of PEF is the knowledge-based, or

statistical, energy function [5,6] (Figure 3). This type of

energy function derives from the database of known

protein structures. The probabilities that residues appear

in specific configurations (such as rotamer conformations

or buried versus surface environments) or the probabil-

ities that pairs of residues appear together in a defined

relative geometry are calculated. These probabilities are

converted into an effective potential energy using the

Boltzmann equation: DG = �RTln( pobs/pexp), where pobs is

the probability of seeing a particular structural element

and pexp is the expected probability of seeing that struc-

tural element by chance [7–9]. The advantage of a knowl-

edge-based energy function is that it can model any

behavior seen in known protein crystal structures, even
Current Opinion in Structural Biology 2007, 17:199–204
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Figure 1

PEFs for evaluating protein conformations range from quantum mechanics, which is accurate but very slow, to more heuristic energy functions that

include statistical terms. In between are MM-PEFs, which are the most thoroughly tested model of molecular energetics. Currently, the protein design

field uses heuristic energy functions, but the trend is towards using more physically based PEFs.
if a good physical understanding of the behavior does not

exist. The disadvantage is that these energy functions are

phenomenological and cannot predict new behaviors

absent from the training set.

Design energy functions include a combination of

MM-PEF, knowledge-based and other terms. In contrast

to MM-PEFs, which have become fairly standardized,

design potentials vary enormously between laboratories.

The various terms are typically calibrated and weighted to

optimize performance for one type of prediction, such as
Figure 2

MM-PEF with continuum solvent.
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experimental binding energy [10,11], or to produce native-

like sequences when redesigning natural proteins [12]. By

way of illustration, we describe the PEFs used in two

recent landmark protein design papers. In the first

example, Looger et al. [13] redesigned various bacterial

periplasmic binding proteins to bind trinitrotoluene, lac-

tate and serotonin. Their energy function included an LJ

term (using CHARMM22 parameters [14]) with the repul-

sive component scaled down to 35%, a Coulombic term

with a distance-dependent dielectric constant of 8.0r and

partial charges from CHARMM22, an explicit hydrogen-
www.sciencedirect.com
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Figure 3

Knowledge-based PEF.
bonding term derived from the DREIDING MM-PEF

[15], a surface-area-based solvation term, a knowledge-

based rotamer term [16], and a term requiring all hydrogen-

bond donors and acceptors to be satisfied. In a subsequent

paper, Dwyer et al. designed de novo triosephosphate iso-

merase activity into ribose-binding protein [17] using a

more accurate electrostatics model that included multiple

geometry-dependent dielectric constants [18]. A second

example is the 93-residue protein with a new a/b fold

designed by Kuhlman et al. [12]. Their energy function

included an LJ term (with well depths from CHARMM19

and radii fit to match the distribution of distances seen in

the PDB), a Lazaridis–Karplus empirical solvation term

[19], a knowledge-based hydrogen-bonding term [20], a

knowledge-based rotamer term and a knowledge-based

pairwise residue interaction term. The scaling factors for

each term were adjusted to optimize recovery of native

sequences when redesigning a training set of 30 proteins.

Why are MM-PEFs and design PEFs so different, and

why do the latter include so many ad hoc terms? The basic

answer is that design PEFs must compensate for an

incomplete simulation of protein behavior: many degrees

of freedom are ignored, modeled implicitly or sampled at

low resolution. We examine this question term-by-term

in the following sections.

Bonded terms

Although it is straightforward to directly use the bonded

portion of MM-PEFs to determine the relative energies

of different rotamer geometries, design potentials have

tended to use fixed rotamer coordinates and knowledge-

based rotamer potentials. MM-PEF bonded energies vary

greatly with small changes in bond lengths and angles.

Thus, these energies are not meaningful unless the

structures have first been locally energy minimized (per-

haps with dihedral angle restraints).
www.sciencedirect.com
Lennard–Jones

The LJ function includes a weakly attractive component

at long distances (the van der Waals energy) and a strongly

repulsive component at short distances. The repulsive

component is sensitive to small atomic displacements: the

LJ energy of a protein crystal structure can decrease by

hundreds of kilocalories per mole upon local energy

minimization, despite imperceptible changes in the

atomic coordinates.

The discrete rotamer sampling used for protein design

calculations inevitably leads to small atomic overlaps,

producing large unfavorable LJ energies. In many cases,

the overlaps could be eliminated by local minimization,

but such minimization cannot be readily incorporated into

combinatorial sequence design algorithms. Instead, the

functional form of the LJ interaction is almost always

softened so that overlaps are less energetically unfavor-

able. For example, the LJ radii can be scaled down [21],

the repulsive component of the LJ energy can be scaled

down [13] or the LJ function can be linearly extrapolated

below a cutoff distance [12].

Softening the LJ function is based on a presumption that

protein cores are reasonably fluid and thus can always

rearrange to accommodate small overlaps. This modifi-

cation, however, always leads to qualitative and quanti-

tative errors in interaction energies. For example, modern

MM-PEFs model hydrogen bonds as a combination of an

electrostatic interaction and an LJ interaction. When

overlaps are allowed, atoms can approach more closely,

producing artificially favorable hydrogen-bond energies.

In general, changing the LJ parameters in any way will

destroy the delicate balance engineered into an MM-

PEF. Use of unmodified LJ functions for protein design

will require either very high resolution discrete sampling

or some form of continuous optimization.
Current Opinion in Structural Biology 2007, 17:199–204
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Solvation

Computing the energy of a protein embedded in explicit

solvent molecules is time consuming, because the energy

must be averaged over many solvent configurations. To

speed up calculations, solvent can instead be modeled as a

smooth continuous material with a characteristic dielec-

tric constant and surface tension. The solvation energy of

such protein continuum-solvent systems is generally sep-

arated into two components. The first component is the

hydrophobic effect, which accounts for the interfacial free

energy of the uncharged protein and the continuum

solvent. The second component is the solvation polariz-

ation energy, which accounts for the interaction of partial

charges in the protein with dipoles and ion clouds induced

in the solvent. Charged atoms closer to the protein surface

have more favorable solvation energies and smaller appar-

ent charge–charge interactions.

Both the LJ function and Coulomb’s law are pairwise

factorable, meaning that the total energy can be

expressed as a sum of interactions between pairs of atoms

without regard to the position of any other atom in the

system. This is important because the total energy can

then be determined by summing precalculated pairwise

interaction energies (required for most rapid structural

optimization procedures). Solvation energies, on the ot-

her hand, are not inherently pairwise factorable. The

interaction between two charges depends on the positions

of other atoms, because the other atoms displace solvent

and salt.

Hydrophobic effect

The continuum hydrophobic effect has traditionally been

modeled as being proportional to the solvent-accessible

surface area of a solute [22]. Pairwise factorable approxi-

mations of surface area have been developed for use in

design calculations [23]. Although widely applied, the

surface-area-based model has clear limitations. For

example, hydrophobic solutes in water can interact favor-

ably when they are separated by a single layer of water

molecules [24]. This type of interaction is completely

absent from a surface-area-based energy. Wagoner and

Baker [25�] have developed a model of the hydrophobic

effect that captures such complex wetting phenomena. It

produces energies that are closer to explicit solvent simu-

lations than the surface-area-based energies are. Their

energy function includes a term proportional to surface

area, a term proportional to volume and a solute–solvent

van der Waals term. Adapting this improved model for

protein design work will require either the development

of a pairwise factorable approximation or the use of a

design algorithm that does not require precalculated

energies.

Solvent polarization

Solvent polarization is very difficult to simulate quickly

and accurately. Consequently, many different empirical
Current Opinion in Structural Biology 2007, 17:199–204
models that subsume polarization energies have been

used in protein design efforts [16,18,19,26]. These

models commonly include a solvation energy for charged

atoms based on accessible surface area and a Coulomb’s

law term with a distance-dependent dielectric constant.

The surface-area models disregard the non-zero contri-

butions of fully buried charges to the polarization energy.

The distance-dependent dielectric constant scales down

Coulomb’s law to account for the screening of charge–

charge interactions by water. However, it ignores the fact

that screening depends on the local environment of each

charge.

A more physical approach is to solve the Poisson–Boltz-

mann (PB) differential equation [27] that describes the

relationship between fixed charge and the electric poten-

tial in a continuum dielectric environment. Water is

assigned a dielectric constant of 80, the protein interior

is typically assigned a dielectric constant between 1 and

20, and the molecular surface defines the boundary

between protein and solvent. Values of the electric

potential on a spatial grid can be obtained using a

finite-difference algorithm. Marshall et al. [28] describe

a pairwise factorable approximation to the PB equation

based on summing precalculated energies for single resi-

dues and for pairs of residues. This treatment does not

take into account rotamer-conformation-dependent

changes in the protein–solvent boundary or that solutions

to the PB equation are not truly superimposable.

Alternatively, the generalized Born equation [29] pro-

vides a fast approximate solution to the PB equation, and

it has been used for protein design [30]. Recent improve-

ments to the generalized Born functional form [31,32]

yield solvation energies that are comparable to those

derived from finite-difference calculations [33].

Explicit water

Continuum solvent models break down when water mol-

ecules are tightly bound to proteins. It may be possible,

however, to incorporate a handful of explicit water mol-

ecules in a continuum solvent calculation. Schymkowitz

et al. [34] developed a method for predicting the positions

of tightly bound water molecules in proteins. Jiang et al.
[35�] showed how to incorporate water molecules into

amino acid rotamers.

Hydrogen bonds

In an MM-PEF, hydrogen bonds are typically modeled as

dipole–dipole interactions. The optimal geometry for a

dipole–dipole interaction, for example, between the C=O

and N–H dipoles in the protein backbone, places all four

atoms in a straight line. However, the charge distribution

around the carbonyl oxygen adopts a trigonal sp2 arrange-

ment, which is not spherically symmetrical. The sp2 lone

pair geometry should favor a bent hydrogen bond. Mor-

ozov et al. [36] showed that the bent geometry is indeed
www.sciencedirect.com



Potentials for protein design Boas and Harbury 203
preferred, according to quantum calculations and crystal

structures in the PDB. Using the PDB statistics, they

developed a knowledge-based hydrogen-bonding energy

function [20,37] and used it to design a new protein [12].

Solute polarization and quantum effects

A widely recognized limitation of MM-PEFs is that they

assume fixed atomic charges and do not model environ-

ment-dependent rearrangement of charge on a solute.

Recently developed polarizable force fields address this

limitation by allowing the electric field to induce dipoles

at each atom [38,39]. Importantly, solute polarization

breaks down the pairwise factorability property of

traditional MM-PEFs. MM-PEFs also do not model

chemical realities such as lone pairs, bond formation

and the partial covalent character of hydrogen bonds.

One possible compromise is to model key parts of the

protein using quantum mechanics and the rest of the

protein using molecular mechanics [40,41].

Conclusions and future directions
The techniques described above have been used to

design proteins with a wide variety of new functions.

Clark et al. [42�] optimized the recombining site of an

antibody to increase the ligand affinity and Lazar et al.
[43] optimized the Fc region of an antibody to bind more

tightly to the Fc receptor. Ashworth et al. [44��] rede-

signed an endonuclease to recognize and cut a heter-

ologous DNA sequence. Ambroggio and Kuhlman [45�]
designed a protein that reversibly switches between two

distinct protein folds with a change in pH or cobalt

concentration.

These examples illustrate the diverse range of useful

functions already achievable by protein design. As PEFs,

search algorithms and computational power continue to

improve, protein design should become a standard and

general research tool.

Acknowledgements
This work was supported by the National Institutes of Health (GM068126-
01 to PBH). FEB was partially supported by a training grant from the
National Institutes of General Medical Sciences (5T32 GM07365-28).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Mackerell AD Jr: Empirical force fields for biological
macromolecules: overview and issues. J Comput Chem 2004,
25:1584-1604.

2. Jorgensen WL, Tirado-Rives J: Potential energy functions for
atomic-level simulations of water and organic and biomolecular
systems. Proc Natl Acad Sci USA 2005, 102:6665-6670.

3. Gordon DB, Marshall SA, Mayo SL: Energy functions for protein
design. Curr Opin Struct Biol 1999, 9:509-513.

4. Pokala N, Handel TM: Review: protein design — where we were,
wherewe are, where we’re going. J Struct Biol 2001,134:269-281.
www.sciencedirect.com
5. Lazaridis T, Karplus M: Effective energy functions for protein
structure prediction. Curr Opin Struct Biol 2000, 10:139-145.

6. Mohanty D, Dominy BN, Kolinski A, Brooks CL III, Skolnick J:
Correlation between knowledge-based and detailed atomic
potentials: application to the unfolding of the GCN4 leucine
zipper. Proteins 1999, 35:447-452.

7. Ben-Naim A: Statistical potentials extracted from protein
structures: Are these meaningful potentials? J Chem Phys
1997, 107:3698-3706.

8. Simons KT, Kooperberg C, Huang E, Baker D: Assembly of
protein tertiary structures from fragments with similar local
sequences using simulated annealing and Bayesian scoring
functions. J Mol Biol 1997, 268:209-225.

9. Dehouck Y, Gilis D, Rooman M: A new generation of statistical
potentials for proteins. Biophys J 2006, 90:4010-4017.

10. Kortemme T, Baker D: A simple physical model for binding
energy hot spots in protein-protein complexes. Proc Natl Acad
Sci USA 2002, 99:14116-14121.

11. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD,
Stoddard BL, Baker D: Computational redesign of protein-
protein interaction specificity. Nat Struct Mol Biol 2004,
11:371-379.

12. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D:
Design of a novel globular protein fold with atomic-level
accuracy. Science 2003, 302:1364-1368.

13. Looger LL, Dwyer MA, Smith JJ, Hellinga HW: Computational
design of receptor and sensor proteins with novel functions.
Nature 2003, 423:185-190.

14. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD,
Field MJ, Fischer S, Gao J, Guo H, Ha S et al.: All-atom empirical
potential for molecular modeling and dynamics studies of
proteins. J Phys Chem B 1998, 102:3586-3616.

15. Dahiyat BI, Gordon DB, Mayo SL: Automated design of the
surface positions of protein helices. Protein Sci 1997,
6:1333-1337.

16. Looger LL, Hellinga HW: Generalized dead-end elimination
algorithms make large-scale protein side-chain structure
prediction tractable: implications for protein design and
structural genomics. J Mol Biol 2001, 307:429-445.

17. Dwyer MA, Looger LL, Hellinga HW: Computational design of a
biologically active enzyme. Science 2004, 304:1967-1971.

18. Wisz MS, Hellinga HW: An empirical model for electrostatic
interactions in proteins incorporating multiple geometry-
dependent dielectric constants. Proteins 2003, 51:360-377.

19. Lazaridis T, Karplus M: Effective energy function for proteins in
solution. Proteins 1999, 35:133-152.

20. Kortemme T, Morozov AV, Baker D: An orientation-dependent
hydrogen bonding potential improves prediction of specificity
and structure for proteins and protein-protein complexes.
J Mol Biol 2003, 326:1239-1259.

21. Dahiyat BI, Mayo SL: Probing the role of packing specificity in
protein design. Proc Natl Acad Sci USA 1997, 94:10172-10177.

22. Chothia C: Hydrophobic bonding and accessible surface area
in proteins. Nature 1974, 248:338-339.

23. Street AG, Mayo SL: Pairwise calculation of protein solvent-
accessible surface areas. Fold Des 1998, 3:253-258.

24. Choudhury N, Pettitt BM: On the mechanism of hydrophobic
association of nanoscopic solutes. J Am Chem Soc 2005,
127:3556-3567.

25.
�

Wagoner JA, Baker NA: Assessing implicit models for nonpolar
mean solvation forces: the importance of dispersion and
volume terms. Proc Natl Acad Sci USA 2006, 103:8331-8336.

The authors developed an alternative to the standard solvent-accessible
surface-area model of non-polar solvation energies. Their model accurately
predicts non-polar solvation forces from explicit solvent simulations.

26. Eisenberg D, McLachlan AD: Solvation energy in protein folding
and binding. Nature 1986, 319:199-203.
Current Opinion in Structural Biology 2007, 17:199–204



204 Theory and simulation
27. Honig B, Sharp K, Yang AS: Macroscopic models of
aqueous-solutions — biological and chemical applications.
J Phys Chem 1993, 97:1101-1109.

28. Marshall SA, Vizcarra CL, Mayo SL: One- and two-body
decomposable Poisson-Boltzmann methods for protein
design calculations. Protein Sci 2005, 14:1293-1304.

29. Bashford D, Case DA: Generalized Born models of
macromolecular solvation effects. Annu Rev Phys Chem 2000,
51:129-152.

30. Pokala N, Handel TM: Energy functions for protein design:
adjustment with protein-protein complex affinities, models
for the unfolded state, and negative design of solubility and
specificity. J Mol Biol 2005, 347:203-227.

31. Lee MS, Feig M, Salsbury FR Jr, Brooks CL III: New analytic
approximation to the standard molecular volume definition
and its application to generalized Born calculations.
J Comput Chem 2003, 24:1348-1356.

32. Yu Z, Jacobson MP, Friesner RA: What role do surfaces play in
GB models? A new-generation of surface-generalized Born
model based on a novel Gaussian surface for biomolecules.
J Comput Chem 2006, 27:72-89.

33. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL III:
Performance comparison of generalized born and
Poisson methods in the calculation of electrostatic
solvation energies for protein structures. J Comput Chem 2004,
25:265-284.

34. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J,
Stricher F, Serrano L: Prediction of water and metal binding
sites and their affinities by using the Fold-X force field. Proc
Natl Acad Sci USA 2005, 102:10147-10152.

35.
�

Jiang L, Kuhlman B, Kortemme T, Baker D: A ‘‘solvated rotamer’’
approach to modeling water-mediated hydrogen bonds at
protein-protein interfaces. Proteins 2005, 58:893-904.

The authors present a new approach to including explicit solvent in
protein design calculations. They include solvent atoms in their rotamers
and use this approach to recover sidechain identities at single positions in
protein interfaces.

36. Morozov AV, Kortemme T, Tsemekhman K, Baker D: Close
agreement between the orientation dependence of hydrogen
bonds observed in protein structures and quantum
mechanical calculations. Proc Natl Acad Sci USA 2004,
101:6946-6951.
Current Opinion in Structural Biology 2007, 17:199–204
37. Morozov AV, Kortemme T: Potential functions for hydrogen
bonds in protein structure prediction and design. Adv Protein
Chem 2005, 72:1-38.

38. Friesner RA: Modeling polarization in proteins and protein-
ligand complexes: Methods and preliminary results.
Adv Protein Chem 2006, 72:79-104.

39. Maple JR, Cao YX, Damm WG, Halgren TA, Kaminski GA, Zhang LY,
Friesner RA: A polarizable force field and continuum solvation
methodology for modeling of protein-ligand interactions.
Journal of Chemical Theory and Computation 2005, 1:694-715.

40. Friesner RA: Ab initio quantum chemistry: methodology and
applications. Proc Natl Acad Sci USA 2005, 102:6648-6653.

41. Cho AE, Guallar V, Berne BJ, Friesner R: Importance of accurate
charges in molecular docking: quantum mechanical/
molecular mechanical (QM/MM) approach. J Comput Chem
2005, 26:915-931.

42.
�

Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B,
Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A et al.: Affinity
enhancement of an in vivo matured therapeutic antibody using
structure-based computational design. Protein Sci 2006,
15:949-960.

The authors used a variety of different design algorithms to optimize the
affinity of an antibody–ligand interaction. The affinity was improved by an
order of magnitude and the crystal structure shows that the design makes
the predicted contacts.

43. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C,
Chung HS, Eivazi A, Yoder SC et al.: Engineered antibody Fc
variants with enhanced effector function. Proc Natl Acad Sci
USA 2006, 103:4005-4010.

44.
��

Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr,
Stoddard BL, Baker D: Computational redesign of
endonuclease DNA binding and cleavage specificity. Nature
2006, 441:656-659.

In this remarkable paper, the authors redesigned the cleavage specificity
of an endonuclease. The redesigned enzyme cleaves the new target
sequence and its crystal structure matches the computational prediction.

45.
�

Ambroggio XI, Kuhlman B: Computational design of a single
amino acid sequence that can switch between two distinct
protein folds. J Am Chem Soc 2006, 128:1154-1161.

The authors developed a design procedure for optimizing a single amino
acid sequence for multiple target structures. They used this approach to
design a protein that reversibly switches between two distinct protein
folds upon a change in pH or cobalt concentration.
www.sciencedirect.com


	Potential energy functions for protein design
	Introduction
	Potential energy functions
	Overview
	Bonded terms
	Lennard-Jones
	Solvation
	Hydrophobic effect
	Solvent polarization
	Explicit water
	Hydrogen bonds
	Solute polarization and quantum effects

	Conclusions and future directions
	Acknowledgements
	References and recommended reading


