Predicting Protein Binding Sites

F. Edward Boas
Russ Altman
Biomedical Informatics
Stanford University School of Medicine

24 May 2000

CELL BIOLOGY DEPENDS ON PROTEIN INTERACTIONS

Protein interactions:

- Provide structural support
- Assemble subunits of enzymes
- Transmit information in cell signaling pathways
- Underly cellular / viral / bacterial adhesion
ARE PROTEINS LIKE LEGOS?

How do the physical properties of protein binding interfaces differ from the rest of the protein’s surface?

Are these differences sufficient to **predict** binding sites without even knowing the binding partner?

SELECTING CRYSTAL STRUCTURES

Crystal structure must contain at least two proteins† that are:
- 1000 – 2000 atoms (excluding hydrogen)
- > 90% standard amino acids
- globular (largest dimension ≤ 2 × smallest dimension)

Fewer than 100 atoms (excluding hydrogen) in other chains

These criteria identified 690 crystal structures in the Protein Data Bank.

† “protein” refers to a single polypeptide chain, or multiple covalently connected polypeptide chains
IDENTIFYING ATOMS INVOLVED IN BINDING

Match protein chains in co-crystal structures with individually solved structures

- **Binding sites** are solvent-accessible atoms near another protein chain
- **Non-binding sites** are other solvent-accessible atoms

These criteria identified 4800 distinct protein chains, containing 5.5×10^5 solvent accessible atoms. Of these:
- 1.2×10^5 are binding sites
- 4.3×10^5 are non-binding sites

AMINO ACIDS CONTENT

Hydrophobic atoms are more likely to bind another protein, but this is only a weak correlation

"Hydropathy" is free energy of amino acid transfer from hydrophobic environment (assumed dielectric constant 2) to water, in kcal/mol

"Enrichment in binding sites" is weighted by the number of solvent-accessible atoms
Binding Sites Often Contain Loops from Different Parts of a Peptide Chain

Variance of local fractional distance along protein chain

Secondary Structure

Ramachandran plot shows that secondary structure correlates with binding capability. In particular, the tightly wound, sterically unfavorable right-handed \(\gamma \) helix is primarily found in protein binding interfaces.
SURFACE CURVATURE

Units of curvature are Å⁻¹. Convex surfaces have positive curvature; concave surfaces have negative curvature.

- Saddle points are more likely to be binding sites
- Indentations in the protein surface are less likely to be binding sites

ELECTROSTATIC POTENTIAL

- Large potentials are associated with binding sites
- Correlation is stronger for long-range potential than for surface potential, suggesting that a protein’s dipole is favorably oriented with its binding site
EXAMINING AMINO ACID CONFIGURATIONS

To examine the 3D configuration of amino acids around a site of interest, count amino acids in various 3D “bins”

Spherical shells

Cylindrical shells

LOGISTIC REGRESSION

Predict probability of being a blue point as:

\[\frac{1}{1 + e^{c_0 + c_1 x_1 + c_2 x_2}} \]

Use logistic regression on the following 263 variables to predict binding sites:

- Curvature
- Bumpiness
- Solvent-accessible fraction
- Amino acid
- Amino acid counts in spherical shells
- Amino acid counts in cylindrical shells
- Fractional N→C distance
- Variance local fractional N→C distance
- Surface electrostatics
- Long-range electrostatics
- Secondary structure
Using a cutoff binding probability of 0.5:
- 15% false negatives
- 34% false positives

SINDBIS VIRUS CAPSID PROTEIN

PDB codes: 2SNW, chains A and B; matched with 1KXA
TRIOSE PHOSPHATE ISOMERASE
Actual dimer interface
Predicted binding site
PDB code: 1TPH

HEMOGLOBIN β CHAIN
Actual interface with α chains
Predicted binding site
PDB code: 4HHB