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Abstract 

The thermodynamics of small clusters of atoms differs from that of bulk matter 

because of the discreteness of individual atoms.  In particular, this paper considers the 

properties of small clusters of weakly interacting particles in a vacuum at thermal 

equilibrium.  These liquid-like clusters can remain in stable quasi-equilibria at certain 

temperatures, although they will evaporate at any temperature given a sufficiently long 

time scale.  Over the time scales considered in this paper, the binding energy of the 

ground state and the boiling point both increased with the number of atoms in the cluster.  

Evaporation of a cluster is often preceded by a long period of quasi-equilibrium, but the 

departure of a single particle causes the rest of the cluster to then quickly evaporate into 

individual atoms. 

Introduction 

 This paper will examine the behavior of small clusters of atoms (N=2 to 14, and 

50) interacting via a pair-wise Lennard-Jones potential (equilibrium radius and 

dissociation energy both normalized to 1).  The clusters will be isolated at zero pressure 

and at thermal equilibrium.  Such a situation might arise from the evaporation of a liquid 

into a vacuum, creating clusters with a Boltzmann distribution of energies. 



 

 

Procedures 

 Clusters of N particles at temperature T were studied using the Metropolis 

algorithm for Monte Carlo simulation.  At each time step, the three spatial coordinates of 

a single, randomly chosen particle were perturbed by a normally distributed random 

number with a standard deviation of 0.04 atomic diameters.  Using normal deviates 

proposes moves in all directions with equal probability, unlike uniform deviates or moves 

along a discrete lattice which would both be anisotropic with respect to the coordinate 

axes.  Each proposed move is always accepted if the total potential energy decreases, and 

accepted with probability e E kT−∆ /  if the energy increases. 

 The starting geometry of the clusters simulated was determined by a two-part 

equilibration scheme.  First, randomly placed atoms were confined to a sphere with four 

times the total volume of the atoms.  These atoms were cooled for 0.1 million steps per 

atom from a temperature equal to the dissociation energy exponentially decaying down to 

0.005 of the dissociation energy.  This simulated annealing procedure, performed with the 

Metropolis algorithm described above, perhaps qualitatively mimics the cooling 

procedure that could have generated the cluster in the real world.  More importantly, it 

ensures that the simulation begins with an intact cluster near its ground state.  Without 

this step, the initially configuration will likely get stuck in high energy local minima in 

low temperature simulations, and might spuriously evaporate at a higher temperature if 

the atoms randomly started too far apart. 

 The second part of the equilibration scheme involves running the Monte Carlo 

simulation at the desired temperature for half a million steps per atom without collecting 

any data.  After equilibration, the simulation runs another half million steps per atom 



 

 

while recording information such as energy, dispersion in energy, the coordinates of the 

atoms, and cluster sizes.  The working definition of a cluster employed in this project is a 

set of particles bonded together, where a “bond” forms between two particles centered 

within two atomic diameters of each other. 

Each simulation is run 10 times and the results averaged. 

 Zero temperature simulations correspond to energy minimization, and are 

especially difficult because of the large number of local minima.  In this project the 

minimization was done with 50 independent Monte Carlo simulations as described above 

at T=0.0001.  These tentative solutions to the optimization problem were “polished” by 

following the energy gradient to the nearest minimum, and then only taking the best 

solution found.  For all N, a majority of the randomly restarted runs converged to the 

same minimum, suggesting that it is the global minimum. 

 The C++ code for the simulations appears in the appendix. 

Results 

 The geometry of the ground state configuration of Lennard-Jones clusters closely 

follows intuition up to at least N=6.  (Please see graphs while reading this discussion!)  

For example, 4 particles form a pyramid, 5 form a trigonal bipyramid, and 6 form a 

square bipyramid.  N=7 is an especially interesting case as its pentagonal bipyramidal 

geometry lies at the core of ground states at least up to N=14.  N from 8 to 12 fill in 

adjacent dimples on the faces of one of the pentagonal pyramids to form another 

pentagonal ring of atoms. 



 

 

 N=13 places a final atom in the indentation at the center of this new pentagonal 

ring.  This geometry is another interesting case as it consists of a central sphere tangent to 

12 other spheres which are each tangent to 6 neighbors.  12 is called the “kissing number” 

for spheres since it is the maximum number of non-intersecting spheres that can be 

tangent to a central sphere.  Each sphere in a cubic or hexagonal closest packing also 

features the maximum kissing number, but its unit sphere is not the ground state for a 

cluster of 13 particles since the non-central spheres have one fewer neighbor than the 

ground state.  Conversely, the N=13 cluster does not form the unit cell for an infinite 

crystal since its pentagons cannot be tiled.  Finally, N=14 consists of the N=13 geometry 

with a weakly bound particle stuck on the side. 

The average binding energy per particle increases with the number of particles, 

approaching an asymptotic value of about 6 units per particle, corresponding to a closest-

packed infinite lattice.  The binding energy of the weakest bound particle also increases 

with the number of particles, but several values of N have anomalous values.  For 

example, the ground states of N=8 and N=14 both have a single weakly bound particle. 

 Below the boiling point, all clusters exhibited a liquid-like phase where the cluster 

stays intact for the entire simulation and particles can diffuse through the cluster, 

exploring conformations largely reminiscent of the ground state.  Higher temperatures 

result in greater fluctuations in energy about a slightly greater average energy.  These 

trends reflect the increasing heat capacity and entropy with temperature. 

 Near or at the boiling point, the clusters begin to dissociate by losing a single 

particle at a time.  It is uncertain whether multiple particles actually do not leave 



 

 

simultaneously, or whether this is just an artifact of a Monte Carlo move set that only 

moves a single particle at a time. 

 Clusters are fairly compact, even near the boiling point, and the loss of a particle 

is almost a discrete process occurring stochastically with little warning.  Once the particle 

gets more than about two atomic diameters away from the cluster, it continues to move 

away from the cluster in a random walk.  Simulations near phase transitions represent 

nonequilibrium results, with some clusters remaining intact, and some beginning to boil. 

 Above the boiling point, an initial equilibrium phase of cluster stability lasts for a 

randomly distributed interval, ended by the loss of a single particle.  The loss of this 

single particle speeds up the loss of additional particles, after which the cluster quickly 

completes its evaporation.  This observation is confirmed by plots of energy as a function 

of Monte Carlo step, and by cluster size distributions that record intact and completely 

evaporated clusters but few intermediate steps. 

 The boiling point of these small clusters, defined as the lowest temperature at 

which evaporation was observed in the simulations, increases almost linearly with N from 

about T=0.1 dissociation energy units for N=2 to almost T=0.3 units for N=10.  After that, 

the boiling point stays around 0.3 units, even for N=50.  The initially increasing boiling 

point with N parallels the increasing average binding energy of larger clusters at their 

boiling point, which parallels the increasing binding energy of the ground state.  The 

leveling off of the boiling point curves at large N is a consequence of the average binding 

energy per particle, which also reaches an asymptotic value.  The energy of the weakest 

bound particle in the ground state is less well correlated with the boiling point since it 



 

 

does not usually stay the weakest bound, but rather diffuses throughout the cluster and 

“feels” the average binding energy. 

 The increase in boiling point with N also explains why evaporation occurs so 

quickly after the loss of a single particle: the remaining cluster now has fewer particles 

and thus a lower boiling point. 

 Graphs of energy as a function of temperature exhibit the properties already 

discussed qualitatively.  Below the boiling point, energy increases slowly with 

temperature, and larger clusters have more negative energies.  No solid-liquid transition 

can be detected from the energy data.  Around the boiling point, the average energy 

quickly increases to zero, but this represents the average of nonequilibrium clusters on the 

verge of boiling away.  Above the boiling point, the clusters have completely evaporated 

and have zero potential energy. 

Some of the E(T) data points were rerun using Monte Carlo simulations an order 

of magnitude longer, with very similar results.  However, over much greater changes in 

time scale, we would expect the E(T) curves and the boiling point to change slightly.  In 

fact, given an infinite amount of time, the clusters will boil at any temperature and reach 

their true equilibrium as a gas since the entropy of this state is much greater.  Thus, intact 

clusters are in quasi-equilibrium and their thermodynamic properties will vary with the 

time scale, albeit slowly. 

 The entropy of intact quasi-equilibrium clusters can be calculated from the time 

dependence of the energy using S T
T
E
T
dT

T
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.  This integral is slightly difficult to 

perform on discrete data points because of the apparent singularity at T=0.  The 



 

 

singularity is removed by assuming the heat capacity 
∂
∂
E
T

 to vary as T3 for low 

temperatures, as in the Debye theory of solids.  The heat capacity for larger temperatures 

can be inferred by assuming a linear relationship between E and T.  As expected, entropy 

per particle increases with the N because of the greater number of possible places to put 

each subsequent particle.  The Helmhotz free energy F=E-TS decreases with the number 

of particles, just like the energy, showing that there is an activation energy for losing 

particles. 

Conclusion 

 The small clusters of atoms studied in this report exhibit a boiling point and 

average binding energy per particle increasing toward an asymptotic value.  Other 

experimenters studying similar systems have discovered that certain clusters with a 

“magic number” of atoms tended to be more stable.  The simulations of this project found 

no such magic numbers, perhaps because the magic numbers of the system are greater 

than 14, or perhaps because the Monte Carlo simulations are not sufficiently accurate.  

One possible improvement to the simulation would be to decrease the temperature 

appropriately after the evaporation of a particle.  Evaporative cooling might be sufficient 

to halt the rapid evaporation process from the simulations in this paper. 



 

 

C++ code for simulations 

// program outputs average energy per particle 
// as a function of N and T 
// for small clusters of weakly interacting particles 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <iostream.h> 
#include <time.h> 
#include "useful.hpp" 
#include "useful.cpp" 
#include "vector.hpp" 
#include "vector.cpp" 
 
 
// constants for potential energy 
const float Req=1.0; // equilibrium radius 
const float De=1.0; // dissociation energy 
/* 
const float potential_table_lower_bound=0.5*0.5; 
const float potential_table_upper_bound=5*5; 
const int potential_table_resolution=100; 
*/ 
 
const float A=2*pow(Req, 6)*De; // coeff. for -1/r̂ 6 
const float B=pow(Req, 12)*De; // coeff. for +1/r̂ 12 
 
// end_N must be larger 
int start_N=13; 
int end_N=13; 
int N; 
vector *pos; 
int *histogram; // of cluster sizes 
float **energy; 
float E; 
 
// start_T must be larger 
float start_T=0.05; 
float end_T=0.05; 
float step_T=0.001; 
 
// parameters for initial cooling 
float start_T_setup=De; 
float end_T_setup=0.005*De; 
float step_T_setup=0.95; // fraction multiplied to decrease temp. 
long steps_setup=1000; // steps per particle per temperature 
 
BOOL detailed=TRUE; 
long nth_step=200; 
long mth_of_nth_steps=4; 
 
const float size_factor=4; // factor times packed volume 
const float initial_step_size=0.04; // actual step_size is dynamically adjusted for a 50% accept rate 
// #define ADAPTIVE_STEPSIZE 
float min_step_size=0.04; //0.005; 
float max_step_size=0.04; //0.5; 
float step_increment=1.0; //1.001; 
float step_decrement=1/step_increment; 
float step_size; 
 
// Note: "step" refers to Monte Carlo step 
//       "trial" refers to independent Monte Carlo runs 
long start_step=1000; 
long end_step=8000; 
int num_trials=3; 
float ***detailed_data; 
 
FILE *data_file; 
FILE *coordinate_data_file; 
FILE *cluster_data_file; 



 

 

 
char data_file_name[256]; 
char coordinate_data_file_name[256]; 
char cluster_data_file_name[256]; 
 
 
// Lennard-Jones: potential(r) = -A/r̂ 6 + B/r̂ 12 
// function expects r̂ 2 (to save computation costs) 
inline float potential(float rsquared) { 
  float temp=1/(rsquared*rsquared*rsquared); 
  return temp*(B*temp-A); 
} 
 
 
// calculate energy from scratch 
void calculate_energy(void) { 
  int i, j; 
  E=0; 
  for (i=0; i<N; i++) { 
    for (j=i+1; j<N; j++) { 
      energy[i][j]=potential(sqr(pos[i].x-pos[j].x)+sqr(pos[i].y-pos[j].y)+sqr(pos[i].z-pos[j].z)); 
      E+=energy[i][j]; 
    } 
  } 
} 
 
// this is necessary to fix some unknown Borland C++ bug 
int a__[5000]; 
int b__[5000]; 
int id__[100]; 
int count__[100]; 
 
// makes histogram of cluster sizes 
// fresh = TRUE  -> new histogram 
//       = FALSE -> increment existing histogram 
void generate_cluster_size_histogram(BOOL fresh) { 
  int i, j, numequiv=0; 
  // a, b: lists of points in the same cluster 
//  int *a, *b; 
  // id: cluster number for each point 
  // count: number of members for each cluster number 
//  int *id; 
//  int *count; 
  // allocate enough for max number of equivalencies 
//  a=new int[N*(N-1)/2]; 
//  b=new int[N*(N-1)/2]; 
//  id=new int[N]; 
//  count=(int*) calloc(N, sizeof(int)); 
  for (i=0; i<N; i++) 
    count__[i]=0; 
  if (fresh) 
    for (i=0; i<=N; i++) 
      histogram[i]=0; 
 
  // build list of equivalencies 
  for (i=0; i<N; i++) { 
    for (j=i+1; j<N; j++) { 
      if (sqr(pos[i].x-pos[j].x)+sqr(pos[i].y-pos[j].y)+sqr(pos[i].z-pos[j].z)<4*Req*Req) { 
        // i and j in same cluster 
        a__[numequiv]=i; 
        b__[numequiv]=j; 
        numequiv++; 
      } 
    } 
  } 
  // assign cluster numbers 
  eclass(id__, N, a__, b__, numequiv); 
 
//  for (i=0; i<N; i++) 
//    cerr << id__[i] << " "; 
//  cerr << "\n"; 
//  getch(); 
 
 
  // count members in each cluster 
  for (i=0; i<N; i++) 



 

 

    count__[id__[i]]++; 
  // generate histogram 
  for (i=0; i<N; i++) 
    if (count__[i]) histogram[count__[i]]++; 
//  delete[] a; 
//  delete[] b; 
//  delete[] id; 
//  free(count); 
} 
 
 
// make single Monte Carlo step 
// takes initialized pos, filled energy table, 
// current energy E, number of particles N, temperature T 
// returns new energy 
void monte_carlo_step(float T) { 
  int which, i, j; 
  float old_E; 
  vector oldpos; 
 
  // make step 
  which=floor(N*ran1()); 
  oldpos=pos[which]; 
  pos[which].x += step_size*gasdev(); 
  pos[which].y += step_size*gasdev(); 
  pos[which].z += step_size*gasdev(); 
 
  // calculate new energy 
  old_E=E; 
  for (i=which+1; i<N; i++) 
    energy[which][i]=potential(sqr(pos[which].x-pos[i].x)+sqr(pos[which].y-pos[i].y)+sqr(pos[which].z-
pos[i].z)); 
  for (i=0; i<which; i++) 
    energy[i][which]=potential(sqr(pos[which].x-pos[i].x)+sqr(pos[which].y-pos[i].y)+sqr(pos[which].z-
pos[i].z)); 
  E=0; 
  for (i=0; i<N; i++) 
    for (j=i+1; j<N; j++) 
      E+=energy[i][j]; 
 
  // accept step ?? 
  float delta_E = E - old_E; 
  #ifdef ADAPTIVE_STEPSIZE 
    if (delta_E<0 || ran1()<exp(-delta_E/T)) { // accept 
      step_size*=step_increment; 
      if (step_size>max_step_size) step_size=max_step_size; 
    } else { // reject 
      step_size*=step_decrement; 
      if (step_size<min_step_size) step_size=min_step_size; 
      pos[which]=oldpos; 
      E=old_E; 
    } 
  #else 
    if (delta_E>0 && ran1()>exp(-delta_E/T)) { // reject 
      pos[which]=oldpos; 
      E=old_E; 
    } 
  #endif 
} 
 
 
void output_coordinates(FILE *f, float T, int trial, long step) { 
  int i; 
  fprintf(f, "%i %f %i %li %e ", N, T, trial, step, E/N); 
  for (i=0; i<N; i++) 
    fprintf(f, "%e %e %e ", pos[i].x, pos[i].y, pos[i].z); 
  fprintf(f, "\n"); 
} 
 
// run Monte Carlo once for fixed N, T 
void monte_carlo(float T, int trial, float &E_bar, float &E2_bar) { 
  double sum_E=0, sum_E2=0; // double to reduce rounding error when summing many terms 
  float initial_size=size_factor*(Req/2)*pow(N, 1/3); 
  step_size=initial_step_size; 
  long step; 
  vector oldpos; 



 

 

  int i, j; 
 
  // initialize with random positions 
  for (i=0; i<N; i++) { 
    pos[i].x=initial_size*gasdev(); 
    pos[i].y=initial_size*gasdev(); 
    pos[i].z=initial_size*gasdev(); 
  } 
 
  // calculate initial energy 
  calculate_energy(); 
 
  // Metropolis cooling to a low temperature 
  // while confining to a sphere of radius initial_size 
//  cerr << "Initial energy: " << E << "\n"; 
  float T_setup; 
  vector center; 
  BOOL moved_particle; 
  float current_size; 
  for (T_setup=start_T_setup; T_setup>=end_T_setup; T_setup*=step_T_setup) { 
    current_size=initial_size-(Req/2)*(start_T_setup-T_setup)/(start_T_setup-end_T_setup); 
    for (step=0; step<N*steps_setup; step++) { 
      monte_carlo_step(T_setup); 
      center=vector(0); 
      for (i=0; i<N; i++) 
        center+=pos[i]; 
      center/=N; 
      moved_particle=FALSE; 
      for (i=0; i<N; i++) { 
        pos[i]-=center; 
        if (abs(pos[i])>current_size) { 
   pos[i]*=current_size/abs(pos[i]); 
          moved_particle=TRUE; 
        } 
      } 
      if (moved_particle) calculate_energy(); 
    } 
//    cerr << "Energy at temperature " << T_setup << ": " << E << "\n"; 
  } 
 
  // start Metropolis stepping at correct temperature 
  for (step=0; step<end_step; step++) { 
 
    monte_carlo_step(T); 
 
    // record energy and coordinates 
    if (detailed && (step % nth_step == 0)) { 
      detailed_data[step/nth_step][trial][0]=E; 
      detailed_data[step/nth_step][trial][1]=step_size; 
      if (step % (nth_step*mth_of_nth_steps) == 0) { 
        output_coordinates(coordinate_data_file, T, trial, step); 
        generate_cluster_size_histogram(TRUE); 
        fprintf(cluster_data_file, "%i, %f, %i, %li, %e, ", N, T, trial, step, E/N); 
        for (i=1; i<=N; i++) 
          fprintf(cluster_data_file, "%i, ", histogram[i]); 
        fprintf(cluster_data_file, "\n"); 
      } 
    } 
 
    if (step>=start_step) { 
      sum_E+=E; 
      sum_E2+=E*E; 
    } 
  } 
 
  output_coordinates(coordinate_data_file, T, trial, end_step-1); 
 
  E_bar=sum_E/(end_step-start_step); 
  E2_bar=sum_E2/(end_step-start_step); 
} 
 
 
void open_files(char *mode) { 
  data_file=fopen(data_file_name, mode); 
  coordinate_data_file=fopen(coordinate_data_file_name, mode); 
  cluster_data_file=fopen(cluster_data_file_name, mode); 



 

 

} 
 
void close_files(void) { 
  fclose(data_file); 
  fclose(coordinate_data_file); 
  fclose(cluster_data_file); 
} 
 
void flush_files(void) { 
  fflush(data_file); 
  fflush(coordinate_data_file); 
  fflush(cluster_data_file); 
} 
 
 
void main(void){ 
  int trial; 
  float T; 
  float E_bar, E2_bar, E_bar_sum, E2_bar_sum; 
  float *saved_E2_bar; // to save <Ê 2> for columns at end of line 
  int i, j, numtemps; 
  char c; 
  cout << "\nDetailed? (y/n): "; 
  cin >> c; 
  detailed = (c=='y' || c=='Y'); 
  if (detailed) { 
    cout << "N: "; 
    cin >> start_N; 
    end_N=start_N; 
    cout << "T: "; 
    cin >> start_T; 
    end_T=start_T; 
    step_T=1; // arbitrary 
    start_step=0; // arbitrary 
    cout << "Steps: "; 
    cin >> end_step; 
    cout << "Record every nth step: "; 
    cin >> nth_step; 
    cout << "Output coordinates on every mth recorded step: "; 
    cin >> mth_of_nth_steps; 
    cout << "Number of independent trials: "; 
    cin >> num_trials; 
  } else { 
    cout << "start N: "; 
    cin >> start_N; 
    cout << "end N: "; 
    cin >> end_N; 
    if (start_N>end_N) SWAP(start_N, end_N); 
    cout << "start T: "; 
    cin >> start_T; 
    cout << "end T: "; 
    cin >> end_T; 
    if (end_T>start_T) SWAP(end_T, start_T); 
    cout << "step T: "; 
    cin >> step_T; 
    cout << "Warm-up steps: "; 
    cin >> start_step; 
    cout << "Averaged steps: "; 
    cin >> end_step; 
    end_step+=start_step; 
    cout << "Number of independent trials: "; 
    cin >> num_trials; 
  } 
  cout << "Data file: "; 
  cin >> data_file_name; 
  cout << "Coordinate data file: "; 
  cin >> coordinate_data_file_name; 
  cout << "Cluster data file: "; 
  cin >> cluster_data_file_name; 
  open_files("wb"); 
 
  // allocate memory 
  pos=(vector*)malloc(end_N*sizeof(vector)); 
  energy=(float**)malloc(end_N*sizeof(float*)); 
  for (i=0; i<end_N; i++) 
    energy[i]=(float*)malloc(end_N*sizeof(float)); 



 

 

  if (detailed) { 
    detailed_data=(float***)malloc(((end_step-1)/nth_step+1)*sizeof(float**)); 
    for (i=0; i<((end_step-1)/nth_step+1); i++) { 
      detailed_data[i]=(float**)malloc(num_trials*sizeof(float*)); 
      for (j=0; j<num_trials; j++) 
        detailed_data[i][j]=(float*)malloc(2*sizeof(float)); 
    } 
  } 
  // allocates one more than necessary just in case of roundoff error 
  saved_E2_bar=(float*)malloc( int(2+round((start_T-end_T)/step_T)) * sizeof(float) ); 
  histogram=(int*)malloc((N+1)*sizeof(int)); 
 
  if (detailed) { 
    fprintf(data_file, "\"Step\", \"Energy (%i columns)\", \"Step size (%i columns)\"\n", 
                num_trials, num_trials); 
    fprintf(cluster_data_file, "N, T, trial, step, E, histogram\n"); 
  } else { 
    fprintf(data_file, "\"\", "); 
    for (T=start_T; T>=end_T-step_T/2; T-=step_T) 
      fprintf(data_file, "%f, ", T); 
 
    fprintf(cluster_data_file, "N, T, histogram\n"); 
  } 
 
  for (N=start_N; N<=end_N; N++) { 
 
    if (!detailed) { 
      fprintf(data_file, "\n"); 
      fprintf(data_file, "%i, ", N); 
    } 
 
    cerr << "\n" << N << " "; 
 
    // cool cluster 
    for (T=start_T, numtemps=0; T>=end_T-step_T/2; T-=step_T, numtemps++) { 
 
      cerr << " *"; 
      E_bar_sum=0; 
      E2_bar_sum=0; 
 
      if (!detailed) { 
        for (i=0; i<=N; i++) 
          histogram[i]=0; 
      } 
 
      for (trial=0; trial<num_trials; trial++) { 
        cerr << "."; 
        monte_carlo(T, trial, E_bar, E2_bar); 
        if (!detailed) { 
   generate_cluster_size_histogram(FALSE); 
          E_bar_sum+=E_bar; 
          E2_bar_sum+=E2_bar; 
        } 
      } 
 
      if (detailed) { 
        for (i=0; i<=(end_step-1)/nth_step; i++) { 
          fprintf(data_file, "%li, ", i*nth_step); 
          for (trial=0; trial<num_trials; trial++) 
            fprintf(data_file, "%e, ", detailed_data[i][trial][0]/N); 
          for (trial=0; trial<num_trials; trial++) 
            fprintf(data_file, "%f, ", detailed_data[i][trial][1]); 
          fprintf(data_file, "\n"); 
        } 
      } else { 
        fprintf(data_file, "%e, ", E_bar_sum/num_trials/N); 
        saved_E2_bar[numtemps]=E2_bar_sum/num_trials/N; 
        fprintf(cluster_data_file, "%i, %f, ", N, T); 
        for (i=1; i<=N; i++) 
          fprintf(cluster_data_file, "%.1f, ", float(histogram[i])/num_trials); 
        fprintf(cluster_data_file, "\n"); 
      } 
 
      // save that precious data before being logged out! 
      flush_files(); 
 



 

 

    } 
 
    if (!detailed) { 
      for (i=0; i<numtemps; i++) 
        fprintf(data_file, "%e, ", saved_E2_bar[i]); 
    } 
 
    // save that precious data before being logged out! 
    flush_files(); 
 
  } 
 
  // close files 
  close_files(); 
 
  // free memory 
  free(pos); 
  for (i=0; i<end_N; i++) 
    free(energy[i]); 
  free(energy); 
  if (detailed) { 
    for (i=0; i<((end_step-1)/nth_step+1); i++) { 
      for (j=0; j<num_trials; j++) 
        free(detailed_data[i][j]); 
      free(detailed_data[i]); 
    } 
    free(detailed_data); 
  } 
  free(saved_E2_bar); 
  free(histogram); 
} 
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