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The Geometry and Game Theory of Chases

1. Introduction

In this paper, we will investigate the hunting strategies of predators and the fleeing strategies
of their prey in a chase of finite time. In particular, we will consider the case of a predator-prey
relationship which might have taken place 75 million years ago, during the late Cretaceous period:
we shall suppose that the velociraptor (Velociraptor mongoliensis) is hunting the thescelosaurus
(Thescelosaurus neglectus). Clearly, if one of the two “players” in this deadly game is both faster
and more agile than the other, it has an overwhelming advantage. In this particular predator-prey
relationship, no such overwhelming advantage exists; the velociraptor is faster, but the
thescelosaurus is more agile, with a minimum turning radius much smaller than that of the
velociraptor. Our goal is to find the optimal strategies for both the hunter and the hunted, in the case
of a single velociraptor hunting a single thescelosaurus as well as that of a pair of velociraptors
hunting a single thescelosaurus.

This original problem actually has a low probability of having occurred, as fossil remains of
the velociraptor have been found only in Mongolia, while fossil remains of the thescelosaurus have
been found only in the midwestern region of the United States and Canada (Weishampel et al. 270,
500). However, this model can be useful in the study of a wide range of such problems, simply by
varying the parameters. In studying these particular creatures, we may come to understand the trade-
off between speed and maneuverability.

2. Parameters, Assumptions, Preliminary Calculations

*We are given as parameters that the velociraptor moves with a speed of v = 60 k/h, or 16.7 m/s,
and the thescelosaurus moves with a speed of v, = 50 k/h, or 13.9 m/s. We are also given that the
velociraptor has a hip height of 0.5m. It is estimated that an velociraptor’s turning radius is three
times its hip height; thus the velociraptor can turn with a minimum radiusrz, = 1.5 m. Moreover, we
are given a thescelosaurus minimum turning radius of 7, = 0.5 m. We assume further that they
always find it more to their advantage to turn with this wide radius than to decelerate, come to a stop,
change direction, and accelerate once more. (This makes sense because most animals, such as dogs
and squirrels, turn rather than stop short and change direction, at least in our experience.)

*The game in question has a fixed maximum length. In general, most hunts are limited by some
finite time, e.g. the maximum endurance (or patience) of the predator, or the onset of night or day.
In this particular case, it is limited by the pitiful endurance of the otherwise fearsome velociraptor.
After a burst of speed of time 7= 15 s, we are given that the velociraptor must stop to rest, while the
thescelosaurus can run for a comparatively infinite length of time. Here, we make the additional
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time required for the thescelosaurus to run as far as the maximum distance the velociraptor could
close in 15 s. Thus the velociraptor must catch the thescelosaurus in the first 15 seconds after its

presence becomes known.

assumption that the velociraptor must rest for more than a time T =3 s, i.e. more than the

*The thescelosaurus will be able to detect the approach of a velociraptor when the distance between
the two is less than some length D; we are given 15 m < D < 50 m. We assume, moreover, that as
the velociraptor is stalking the thescelosaurus, and not the other way about; thus the velociraptor will
be able to detect its prey farther than 50 m away. Furthermore, for the second part of the problem,
we assume that D is not dependent upon angle; i.e., if each member of a pair of velociraptors
approaches from a different angle relative to the thescelosaurus, the thescelosaurus will detect each
one when its distance from the thescelosaurus is less than D.

«We will assume that due to the position of the eyes on opposite sides of the dinosaurs’ heads, their
vision is virtually 360°; thus they are aware of the position of their opponent independent of
orientation.

*The average human reaction time is = 0.1 s; the thescelosaurus can turn around 180° in this amount
of time. We will assume that animals with the speed and agility of these dinosaurs have a
considerably smaller reaction time A¢, which we will vary between 0.005 s and 0.05 s in our study.
Furthermore, we will assume that when the thescelosaurus has to register the presence of two
velociraptors instead of one, this additional burden on its senses does not actually change its reaction
time.

*From a picture of the velociraptor (Czerkas 28 compared with Paul 363), we deduce approximate
measurements: a body length of 3 m, foreclaw length 0.5 m, hip-to-foreclaw distance 0.6 m, and hip-
to-head distance 1.2 m. Moreover, a running bipedal dinosaur, due to its long tail, has its center of
gravity close to the hips (Alexander 69). Based on these measurements of the bipedal velociraptor,
we assume that, while running at top speed, it will catch anything that comes within a distance
&, = 0.6 m of its position, which we define to be the place on its torso from which the foreclaws
extend. At the widest point of its torso, the velociraptor is only 0.4 m wide, and thus we can ignore
this thickness as it is contained well within the &  reach of its arms. Note that the location of the
center of this reach is not at the hips, which is the point from which we assume the turning radius
was calculated by the scientists. However, we shall see that this slight incongruity does not
qualititatively change our approach to the problem.

*The thescelosaurus is given to be a biped of similar size. For the velociraptor to catch the

thescelosaurus,we assume it must be able to grab at the torso, as the head and tail are too thin to
easily grab at 60 km/h. Thus we will represent the thescelosaurus as a circle of radiusd, = 0.2 m
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over its hips. If the grabbing region of the velociraptor intersects this circle, the thescelosaurus has
been caught.

«In order to facilitate calculation we will assume that both predator and prey move at full speed for
the entire time of the hunt 7, even when they are moving in curves, with radii of curvature no less
thanr and 7,, respectively. Note that this assumption is not entirely reasonable, as one can calculate
the centripetal acceleration to be 19g and 39.4g respectively (g being gravitational acceleration at
the surface of the earth) . Given time for further investigation, it would be appropriate to model the
dinosaurs with a maximum acceleration up to a top speed.

For the second part of the problem, with two velociraptors, we will assume that the velociraptors
work perfectly together:
a) a velociraptor has just as much incentive to let its companion catch the thescelosaurus as
to catch the prey itself.
b) the velociraptors are perfectly coordinated and can communicate their plans.
c¢) the velociraptors must allow each other space to move; we will assume that this is
equivalent to preventing their grabbing regions from intersecting.

3. Analysis: One Velociraptor
3.1 Approach
We will begin by considering the simple case of the velociraptor initially chasing the

thescelosaurus on a straight line, separated by a distance d significantly larger than the turning radii
of the dinosaurs, as shown at below.

e >
The thescelosaurus’s goal is to evade the velociraptor for however much time 7-¢ remains before the

velociraptor runs out of endurance. Thus, if d > (v, - v,)(T-7), the thescelosaurus can run directly
away from the velociraptor, and the velociraptor cannot close the distance in the time remaining.

But what if d < (v, - v,)(T-t) ? (Certainly this will be the case if the velociraptor can
approach the thescelosaurus undetected to a distance closer than (v, - v,)T=42 m.) In this scenario,
we know that the thescelosaurus must make use of its superior maneuverability if it is to survive,
while the velociraptor’s primary goal is to close the distance between itself and the velociraptor.

For sufficiently large d, no matter how the thescelosaurus turns, it is a trivial matter for the
velociraptor to adjust its course to keep heading directly toward its prey. Consider the diagram
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below; note the small angle @ by which the velociraptor must adjust its course. Thus while d is
large, the velociraptor can adjust its course appropriately to directly close in on the thescelosaurus.

3.2 Encounter

The thescelosaurus must now make some decisions: When has the velociraptor come near
enough for the thescelosaurus to make use of its superior agility (while not getting eaten), and how
should it let the velociraptor approach? We will consider two representative strategies.

Encounter A

In this strategy, the thescelosaur will initially run directly
away from the velociraptor. This costs the velociraptor time as it can
only close the relative distance at a rate of v - v, Once the
velociraptor has closed to within a distance £, the thescelosaurus will
use its superior maneuvaribility to “dive” out of the way. In the
diagram at right, the thescelosaurus will turn at its minimum turning
radius; the velociraptor will turn at its maximum turning radius to
intercept, but it is too late. The distance k£ must be chosen with great
care; if it is too large, the velociraptor will be able to adjust its angle
and close on the thescelosaur. If it is too small, the thescelosaur will
not be able to get out of the way of the velociraptor’s grabbing radius.

Encounter B

In this strategy, the thescelosaurus will allow the velociraptor
to only close to a distance /, considerably greater than the distance &
in strategy A.. Upon reaching this point, the the thescelosaurus will
then turn around and head directly foward the velociraptor. (See @
at right.) The velociraptor, of course, will continue to close; the
distance between them will now shrink at a rate v, +v,. At an
appropriate distance m, the thescelosaur will again dive out of the
way. (See @ at right.) In comparison to strategy A, however, the
thescelosaur will be even more successful at dodging the
velociraptor, as it need only change its course by a small amount and
it will fly by the velociraptor at a relative velocity of approximately
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v, + v,. The value for m must be chosen with great care: if it is too small, the thescelosaur will not
be able to stay outside the reach of the velociraptor, while if it is too large, the velociraptor will be
able to compensate, and intercept the thescelosaurus.

For a given set of parameters (speeds, turning radii, grabbing radius of the velociraptor), there
may or may not be values of &, /, or m such that strategies A and/or B will allow the thescelosaurus
to survive. We propose to study this property of the parameters.

3.3 Endgame

Ifthe thescelosaurus survives the encounter, the velociraptor will attempt to turn around, and
once again close in its prey. The thescelosaurus will have one of two strategies in this situation:

Endgame A

Run away! Ifthe distance between the thescelosaur and the velociraptor is now greater than
(v, - v)(T-1), this is clearly the best approach; it will escape unscathed as the velociraptor runs out
of endurance.

Endgame B

This is a slightly more daring maneuver, but will take a big chunk of the velociraptor’s time.
Instead of running away from the velociraptor, the thescelosaurus should try to curve around it,
ending up directly behind the velociraptor. The velociraptor must turn around to come at the
thescelosaurus; due to its superior agility, the thescelosaur may be able to remain in this position
relative to the velociraptor for some time. Ifthe velociraptor starts to turn left, the thescelosaur will
also start to turn left, attempting to remain 180° behind it. Due to its superior speed, however, the
velociraptor will eventually outdistance the thescelosaurus, and the thescelosaurus will no longer be
able to stay directly behind it. At this point, the thescelosaur should resort to Endgame A, as the
velociraptor will soon turn around and chase it.

At the end of this post-encounter “endgame,” the velociraptor will once again be chasing the
thescelosaurus, and we return to the “approach” phase.

4. Modeling the Chase: One Velociraptor
4.1 The Velociraptor Metric
We will begin our model of the chase by asking the following question: How would the

velociraptor get from point A to point B? More precisely: If the velociraptor is at the origin of the
plane, facing in the positive y-direction, how would it get to the point (x, y). Since we are
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considering the velociraptor to have constant speed, it should simply take the shortest path from the
origin to the point. Unfortunately for the velociraptor, this distance is not the Euclidean metric, since
the velociraptor has a limited turning radius! It cannot take a straight line path. So what is the
appropriate path?

In the diagram at right, we have placed the velociraptor at the
origin, and the two circles to either side represent the path of
minimum turning radius. For points (such as the points 4 and B)
outside these circles, the choice of minimum distance path is fairly
clear. The velociraptor will turn around the circle of minimum radius
until it is heading directly toward the destination point. It will then
leave the circle and head straight toward the point. Representative
paths are shown at right as dashed lines. Note that it is always
advantageous to turn toward the side of the plane on which the
destination point lies. (For the calculation of this length, refer to the
Appendix.)

Points inside the circles of minimum turning radius are more
difficult for the velociraptor to access. It must somehow move such
that destinations points inside these circles (e.g. point C) are on or
outside the circles of minimum curvature. The shortest way to do this
is to turn away (in this case, to the left) from the destination point,
following the other circle of minimum radius. Once the destination
point lies outside the circles of minimum radius, follow the circles to
the point, as shown at right. (For the calculation of this length, refer
to the Appendix.)

We now define a new metric (metric 1) on the plane: the
distance along the curve from the origin (the location of the
velociraptor, with the velociraptor facing the positive y-direction) to
the given point that the velociraptor will follow. This metric is
represented at right as a density plot with contour lines superimposed.
Darker regions correspond to shorter distances for the velociraptor.
The circles of minimum turning radius are easy to see due to the

discontinuity of the metric on the portions of the circles above the x- \_/&/

axis. (Plots generated using Mathematica.)

In the calculation of our metric thus far, we have simply considered the velociraptor to be a
point. But in truth, the velociraptor has a grabbing radius of & ! Thus to access a given point in
theplane it only needs to reach any point a distance 6, from it. We will assume that the velociraptor
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will chose to go to the point within a distance &  from the destination
that minimizes the distance it must travel. Therefore, we replace the
value of the metric at each destination point with the minimum of the
value of the original metric on a disk of radius®, surrounding the
desination point, yielding the plot at right (Metric 2). Note that the only
parameters on which metrics 1 and 2 depend are the grabbing radius and
minimum turning radius of the velociraptor, and metric 1 is simply
metric 2 assuming a grabbing radius of zero.

Now we will treat a subtlety we alluded to in the previous
section. As mentioned in the assumptions, the origin of this coordinate
system (the velociraptor’s center of gravity) is actually 0.6 m behind the
center of the grabbing radius. However, one can see from the diagram
atright that given the circular and straight-line motions discussed above,
the model of the situation remains exactly the same if we shift the origin
to the center of the velociraptor-ball and simply change the effective
minimum turning radius to y/1.52+0.62 = 1.6 m.

We can further simplify our model in the following manner: we know

that the velociraptor has caught the thescelosaurus if their effective regions (circles of radiusé  and
8,, respectively) overlap. This is equivalent to saying that the centers of the two circles are separated
by a distance less than 6 = 8 +8,, or that the velociraptor has a grabbing radius of 0, and the
thescelosaur is a point. We thus define our metrics as described above, with effective turning radius
1.6 and effective grabbing radius6 = & +6, = 0.8 m.

4.2 Dinosaurs have brains the size of a peanut

Given the velociraptor metric, we will first assume that the velociraptor will simply act to
minimize the value of the metric and the thescelosaurus will act to maximize it. We will see later
that this is not sufficient to examine all possible strategies (in particular, Encounter strategy B,
wherein the thescelosaurus heads straight for the velociraptor until the last possible moment), and
we will soon make our dinosaurs a bit more sophistocated. However, we begin with this as a first
approximation.

To evolve the system in time at a given time ¢, each dinosaur will consider the location and
heading of its opponent. It will then choose how to move during the next time step Az. (Note that
the value of At is approximately equivalent to its reaction time, as it is only after the time At that the
dinosaur will next be able to evaluate the movement of its opponent.) As a range of options, the
dinosaur will choose from a selection of arcs with length vA¢ and radii between the minimum turning
radius and infinity (a line segment), shown at right, below. To choose among them, the dinosaur
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may choose the path with the most advantageous endpoint. Or, it
may extrapolate each path several more timesteps, and choose from
among these based on the metric evaluated at their endpoints. We
will vary this choice of strategy in our analysis of the model.

Using Borland C++, we developed a computer simulation of the dinosaurs’ behavior. Using
this strategy (wherein the velociraptor always attempts to minimize the metric and the thescelosaurus
always attempts to maximize), several phenomena discussed in section 3 were observed. (Perhaps
most importantly, the dinosaurs chose paths similar to those used in determining the metric.)

When the dinosaurs were separated by a distance larger than approximately three meters, we
observed the “approach” phase of the chase. The thescelosaurus would run directly away from the
velociraptor, while the velociraptor would adjust its course to trail directly behind, closing the
distance. Under most circumstances, the thescelosaurus would attempt to “shake” the velociraptor,
but since the velociraptor was a sufficient distance behind, it was easy for it to adjust its course
appropriately. Thus we observed a rapid (on the order of a time-step =0.01 s), small amplitude
oscillation of the thescelosaurus’s direction in the approach phase. Once the velociraptor gets close
enough to the thescelosaurus in the simulation, the thescelosaurus will adopt encounter strategy A
(discussed in section 3.2). If it survives, it adopts one of the endgame strategies. In Color Plates 1
and 2, we show a hunt wherein the thescelosaurus successfully evades the velociraptor for fifteen
seconds using encounter strategy A followed by endgame strategy B.

We further found that the thescelosaurus performed better using metric 2 looking only one
temp-step ahead. Metric 2 is clearly advantageous for the prey because this metric teaches it to stay
out of the path of the predator’s grabbing radius, rather than simply avoiding its center. The
thescelosaur relies on its ability to maneuver quickly; thus it constantly adjusts its heading, rendering
it useless for it to estimate several time-steps into the future.

The velociraptor performed optimally using metric 1, looking five time-steps ahead. We
originally programmed the velociraptor to use metric 2, but it turned out to be a bit too cocky; the
velociraptor was constantly dissapointed as the thescelosaurus barely slipped out of reach. When
we changed its strategy to employ metric 1, this problem was eliminated. In a future investigation,
it may be useful to make the velociraptor to use metric 2 with a non-zero grabbing radius smaller
than the actual value.

We now ask what parameters allow the thescelosaurus to survive. For the given speeds and

minimum turning radius, the thescelosaurus will always survive for values of the effective grabbing
radius O < 0.4 m, and is always captured for 0 > 0.5. In the region in between, the outcome is highly
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sensitive to initial conditions. Unfortunately for the thescelosaur, the given value of 0 is actually
0.8 m. Thus, the thescelosaur should try encounter strategy B.

4.3 The thescelosaurus learns to play “chicken”

We now wish to consider encounter strategy B. However, as strategy B requires the
thescelosaurus to head directly toward the velociraptor, this is clearly incompatible with the
thescelosaurus looking forward a few time to see which path will maximimize its distance from the
velociraptor (based on metric 2). Thus, we must modify our simulation to study this strategy.

After the encounters described in 4.2 in which the thescelosaurus escapes, the thescelosaurus
is usually able to increase the distance between itself and the velociraptor to = 7.5 m, and the next
encounter occurs ~3.2 s later. We will assume that this is sufficient time and distance for the
thescelosaurus turn around such that it is heading directly toward the velociraptor when the
encounter begins. We therefore will only consider part 2 of encounter strategy B, wherein the
thescelosaurus dives out of the path ot the velociraptor just before collision.

We assume that once the thescelosaurus begins to dodge, it is simply resuming its original
strategy of maximizing the distance (according to metric 2) between the two dinosaurs (See color
plate 3). Thus, we can simulate this strategy using the original simulation, with the initial condition
that the dinosaurs are heading straight toward each other separated by a small distance m, as shown
in @ of the diagram of encounter strategy B in section 3.2.

We found that if the thescelosaurus runs towards the velociraptor, and starts turning when
he is 2.15 m from the velociraptor, he will escape every time from a grabbing radius of 0.6, even
if the other parameters are changed slightly. Thus strategy B is a clear improbement over strategy
A.

A rough calculation using the numbers we know reassures us that such a strategy will indeed
work: after one such pass, the thescelosaurus has a 7 m lead, and in the time it takes for the
thescelosaurus to turn around 180 degrees the velociraptor will gain about 1.9 m; this leaves the
thescelosaurus a bit of maneuvering before the critical 2.15 m turning point.

4.4 The velociraptor takes a gamble, or, The rational dinosaurs

If the parameters are such that the thescelosaurus can escape using strategy B, what is the
velociraptor to do? In our study of this strategy, we found that for a grabbing radius of 0.6 m, the
2.15 m critical distance had very little room for error--if the thescelosaur dodges too early or too late
by 0.1 m, it will be caught. Thus, the velociraptor knows exactly when the thescelosaurus will make
its dodge.
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If the velociraptor pursues its until-now optimal strategy of minimizing his metric, as above,
it will lose its dinner every time. Therefore, it is to its advantage to try to anticipate the movement
of the thescelosaurus; if the velociraptor guesses correctly which way the thescelosaurus will
swerve, and correct its own course accordingly, it can gain valuable time and thus catch its prey.
However, if it does not guess correctly, it will lose even more time than if it had merely gone
straight. Moreover, the thescelosaurus pursued by such a decision-oriented velociraptor, for its part,
also wants to anticipate the movement of its predator.

We can model this as a game theory problem. Consider the last possible moment before the
thescelosaurus must swerve. Under our original strategy B, the thescelosaurus will swerve either left
or right either left or tight at this time. The velociraptor, knowing this, should arbitrarily choose to
swerve either left or right in this instance, giving it a 50% chance of guessing correctly and catching
its prey. However, the thescelosaurus knows this! So, if'it is sure that the velociraptor will swerve,
it should keep going straight past the critical point, and once the velociraptor swerves it can dodge
the the other way an instant later. The velociraptor, knowing this, realizes it is not always to its
advantage to anticipate the movement of the thescelosaur; perhaps the thescelosaur will anticipate
its anticipation. In this situation, the velociraptor’s optimal strategy is to keep going straight! The
thescelosaur, then past the critical point, will be eaten.

Thus, it may be reasonable for the thescelosaur to move left (L), right (R), or stay straight
toward the center of the velociraptor (C). The velociraptor can choose to antipate these moves; we
thus denote the velociraptor’s strategy by L, C, or R. If the velociraptor’s guess is correct, we assyne
it will catch the thescelosaur, receiving a normalized payoff of 1, and the thescelosaur receives a
payoffofzero. If the velociraptor guesses incorrectly, the thescelosaurus will survive the encounter,
and the game will be played again at the next encounter, and so on until the velociraptor’s endurance
runs out.

If the thescelosaurus swerves one way and the velociraptor anticipates the other (a “large
miss”), then it will be a decent interval of time before the velociraptor catches up to the
thescelosaurus for the next encounter. If, however, one of the dinosaurs goes straight and the other
swerves (a “small miss”™), it will take less time for the velociraptor to catch up. Thus, there will be
fewer encounters for the remainder of the hunt following a large miss than there will be after a small
miss, and thus the probability p that the thescelosaurus survives the hunt after a small miss is less
than the probability ¢ that the thescelosaurus

survives the hunt after a large miss. In the small Thescelosaurus

miss case the thescelosaur’s payoff is therefore 3 % 5 ?_ '1:{_
p, and that of the velociraptor is 1-p. In the Velociraptor| C 1’-q 3 1 cC)I,q 1_2,2
large miss case, the thescelosaur’s payoff is ¢, R ‘I-p’p 1’-q BE 0’

and that of the velociraptor is 1-q. These results
are sumarized at right.
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In this analysis, we have made several assumptions. In particular, we have simplified the
pay-offs such that all small misses result in the same payoffs, and all large misses result in the same
payoffs. This may not be entirely correct, as small misses come in two different forms: those in
which the velociraptor goes straight, and those in which the thescelosaurus goes straight. We have
also assumed that the dinosaurs are symmetrice, and do not prefer one side to the other.

We would like to find any Nash equilibrium of this payoff matrix. It is clear that there is no
pure eqilibrium, so we look for a mixed strategy. Let @ and b be the probabilities the velociraptor and
thescelosaurus choose L, respectively. Since there is no difference between choosing right or left,
we can say that the probability a dinosaur picks L is equal to the probability that it picks R. Thus the
probability that the dinosaurs choose strategy C is 1-2a and 1-2b, respectively.

Now finding the mixed Nash equilibrium is pedestrian. As in the elementary game-theory
problem, each dinosaur wants to maximize its own expected payoff, and minimize that of the other.
This will occur when the expected payoffs of the opponent are equal for any of its strategies.

Let P(V*>L) be the expected payoff for the thescelosaur if the velociraptor chooses L. Thus
we have P(V»L) = P(V*R) = (1 - 2b)q + bp, and P(V>C) = 2¢b. Setting these thescelosaurus
payoffs equal, we find b = 9
49 -p

Similarly, we have P (T>L) =P (T*R)=a + (1 - g)(1 - 2a) + a(1 - p) and

P(T>C) =2a(l - g)+(1 - 2a). Setting these equal, we find that a is also 2 7
q-p

Thus, to determine the probabilities a and b, we must determine p and g. If there is only time
remaining in the chase for one encounter, then p = g = 1, as the thescelosaur will not have another
chance. Thus @ = b = 1/3, and thus each dinosaur will choose each of its three strategies with equal
probablilities, and the thescelosaur will escape 2/3 of the time! Thus if both dinosaurs know that
only one encounter remains, their expected payoffs from that encounter are 1/3 (for the velociraptor)
and 2/3 (for the thescelosaurus).

Now suppose (for example) that in a given encounter, if there is a small miss there will be
time for one more encounter, while there will not be time for another encounter if there is a large
miss. Thus p = 1, since a large miss means the thescelosaur survives the chase, and g = 2/3, since
the probablility of the thescelosaur surviving the next encounter is 2/3, from the previous paragaph.
Therefore, a = b = 2/5.

Given more time for this study, time-dependent values of p and ¢ could be determined, and
thus we could determin the subgame-perfect Nash equilibrium of the dinosaurs for the entire chase.
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4.5 Additional Comments

We also observe (refer to sensitivity section) that the simulator running encounter strategy
A is highly sensitive to small changes in various parameters (most strikingly, reaction time), whereas
encounter strategy B is not. Given this sensitivity along with the bigger escape range of strategy B,
we see that the optimal evasion strategy for the thescelosaurus is to use strategy B in two regions:
a) the region where the grabbing radius is sufficiently small such that strategy B will always work,
as strategy A will not always work everywhere in this region; b) the region where strategy B
sometimes works but strategy A never works.

5. Two velociraptors: what changes?
Sa. Approach

As before, it is to the thescelosaurus’s advantage to run directly away from the velociraptors
when the distance between them is large. With two velociraptors, this translates to the thescelosaurus
running such that the distance between it and one velociraptor remains the same as the distance
between it and the other velociraptor. In this large-distance limit, the strategy for the velociraptors
is also clear: they should run towards the thescelosaurus using the same strategies as above.

There is one substantial difference between this case and that of one velociraptor: at the very
beginning of the chase, the initial configuration is specified not only by D (which suffices for the
single velociraptor and prey), but also by the angle made by the two velociraptors with the
thescelosaurus as the vertex. It is to the velociraptors’ advantage to start out 180" apart, assuming
the thescelosaurus moves in a straight line and the velociraptors continually adjust their directions
to intercept it (a reasonable assumption in the far distance limit). This arrangement produces the
maximum possible initial approach velocity: the velociraptor’s maximum velocity v,.

5b. Encounter

By the time the velociraptors close in on the thescelosaurus such that the prey will will have
to start to curve, the configuration of the two velociraptors plus thescelosaurus approaches one of
only two cases. In the first case, both velociraptors run neck-to-neck and hence act roughly as one
velociraptor with a rather large turning radius. In the second case, the velociraptors and the
thescelosaurus form a straight line, but one velociraptor is behind another.

There are, then, two main strategies for the velociraptors: either to run neck-to-neck or for
one to run behind the other and pounce as soon as the thescelosaurus starts turning. The neck-to-neck
strategy is quite easy to model; as the two predators act as one, this case is a simple variant of the
one-predator case. As one might expect, the critical radius turns out to be half that of the one-
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predator case. This model is probably fairly biologically accurate for radii larger than the critical
radii, as few calculations and complex maneuverings are required. This strategy should be chosen
for the appropriate critical-radius case

The consecutive-velociraptor strategy, on the other hand, is a bit trickier. This strategy is
meant for very small critical radii (0.3 or less). The idea is for one velociraptor to “corral” the
thescelosaurus by curving toward it, even though according to the distance metric this actually makes
the thescelosaurus farther away. This maneuver thus restricts the movement of the thescelosaurus
by a great deal; the other velociraptor, which has been cruising behind the corraling velociraptor
during this maneuever, can then circle in for the kill.

Preliminary studies using the simulator show that this strategy shows a great deal of merit.
However, the simulator does break down; the would-be corralling velociraptor curves the wrong
way. Although we did not program the simulator to allow the animals to work together as the
preceding paragraph implies, we are confident that this strategy will work for small radii if such
experiments are done. Note also that it becomes much harder for the thescelosaurus to dive between
the predators, although this is probably possible for small enough critical radius.

6. Sensitivity of the model

We tested the model by varying the parameters of the simulator, most notably the reaction
time and the grabbing radius. Changing the curving radii and the relative velocities, while
undoubtedly having a pronounced effect on the outcome, does not exhibit counterintuitive, extremely
sensitive, or chaotic behavior.

Varying the reaction time led to interesting results. It turns out that the model is rather
sensitive to the reaction time (though not unpredictable); over a variation of 0.04 s in reaction time,
the critical radius could shrink by as much as 0.1 m, not a trivial factor when the critical radius is
only about 0.4. Interestingly enough, the velociraptor does best when its reaction time is relatively
long (0.05 s), whereas the thescelosaurus does best when its reaction time is relatively short (0.01
s). Therefore, we dealt with this sensitivity by choosing the reaction time for each dinosaur as that
where it did best (where closest approach distance was maximized, for the thescelosaurus; and
minimized, for the velociraptor), all other parameters (including the reaction time of the other
dinosaur) held constant.

As mentioned before, strategy A is extremely sensitive in the 0.4-0.5 region to changes in
initial position and velocity. Not only is this behavior sensitive, but it also seems to be chaotic. Such

unpredictable behavior is a weakness in strategy A. Strategy B exhibits no such sensitivity; thus the
sensitivity does not become a weakness of the model overall.

7. Strengths and weaknesses of the model
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Our model has many strengths, perhaps the greatest of which is that the model is easy to
understand: minimization and maximization of a metric is a simple concept, and one which is not
hard to implement.

Another prime strength of our model is the extreme robustness of the simulator. Not only can
the simulator handle a wide range of similar scenarios simply by changing the parameters involved,
but it can also handle a variety of different strategies simply by adjusting the initial conditions
accordingly, as we did with strategy B. However, we were not able to reprogram the simulator to
deal with the cooperation between two predators. Also, the dependence upon sensitivity is somewhat
troublesome, though not debilitating.

Moreover, we feel that that the part of our model incorporating strategy B has many virtues
to recommend it. Its robustness, as discussed in the previous section, lends it credibility as a feasible
strategy. In addition, its applicability to a relatively large subset of turning radii makes it a better
strategy than any other we could find. Furthermore, the game theory presented can be applied to most
such finite games. However, we have a caveat in that in an actual situation involving live creatures,
the prey would almost certainly not have the presence of mind to realize that running straight
towards its predator would be the optimum strategy.

One of the main weaknesses of our model is the assumption that the dinosaurs go at top
speed even when they are turning. More realistically, they should slow down to go around the curves
at a reasonable centripetal acceleration. As we mentioned in our analysis of the problem, we have
made progress on changing the metric to take this deceleration into account, but we were unable due
to time constraint to fully explore this aspect of the model. However, we do present thoughts on this
direction for further analysis of the problem below.

8. Addendum: Realism rears its ugly head

As we noted in the Assumptions section, the assumption that the dinosaurs are going at their
top speeds even on curves is a rather poor one due to the tremendous centripetal accelerations that
would be involved. A better approximation is to model the dinosaurs’ velocity on a circle arc as
related to the radius of that circle. Since for centripetal acceleration, a = v?/r, a first approximation
is to assume that the dinosaurs can sustain an acceleration of, say, 3g, and can keep that maximum
acceleration no matter what the radius of curvature is. Then we can model the velocity as a function
of the radius as v() = min(y/a/r, Vinax)-

The natural question we must ask is this: does this change the optimal strategy for the
velociraptor?
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A second approximation is to take into account the tangential acceleration and deceleration
to the curved paths when the radius of curvature is changing; this not completely negligible, since
if the
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Appendix: Calculation of the velocirapator metric
1. Outside the circles of minimum turning radii

Let the velociraptor (currently considered to be a point) be located at the origin, facing in the
positive y-direction. Let the destination point be A4, a distance / from the velociraptor, at an angle
0 from the velociraptor’s heading; thus, 4 = (Isin0, lcos0). We will abbreviate the minimum turning
radiusr, as r. Let B = (0, r) be the center of the circle of minimum turning radius, and let C be the
point at which the velociraptor leaves the circle and moves along a straight line to point A. (Thus
line AC is tangent to the circle.) Let ¢ = ZABC, and = /OBC. This is summarized in the diagram
below:

%
— (Isin 6, Isin 0)

The total distance the velociraptor must travel is the length AC and the length of the arc OC, which
is (P - o). From the given coordinates, we have AC = \/ (Isin® - 7)?+(Icos0)?, and BC = r, so the

length AC =\/ (Isin® - r)*+(lcosO)? - r2 =/I(I -2rsinb). The law of cosines tells us that
given a triangle with sides a, b, and ¢, the angle opposite the side with length ¢ is

2 2_ .2
cos”! %) . We have found 4B above; we know OB = r, and OA = [; thus we have angle
a

B. The angle & is one of the acute angles in right triangle ABC, thus we can say that o =

tan—1(£ . Thus, the total length is I -2rsinB) + rcos™ r - IsinB ]

BC 2 : 2
“-2
I(I - 2rsinB) ‘/ Irsin@ +r

rtan”!
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2. Inside the circles of minimum turning radii

Let 4 be the destination point, P and Q the centers of the circles of minimum turning radius, and B
the center of the right-hand circle of minimum turning radius after the velociraptor moves through
arc OC, as shown above. Let angles ¢, & ,[3, be as shown above. The velociraptor must move
through minor arc OC and major arc AC, for a total length of 27 - ¢ + o+ [3). Let 4 have

coordinates (x, y). The Pythagorean theorem yields that AP=y/[¥ + r)?+y?,and AQ =1/ (x - r)?+y2.
The lengths PB, PQ, and 4B are 2r, 2r, and r, respectively. Thus we may apply the law of cosines
as described in A.1, and find the angles in question.
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